Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Learning to forecast vegetation greenness at fine resolution over Africa with ConvLSTMs
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-006-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-006-alpha.b-cdn.net
      • sl-yoda-v2-stream-006-beta.b-cdn.net
      • 1549480416.rsc.cdn77.org
      • 1102696603.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Learning to forecast vegetation greenness at fine resolution over Africa with ConvLSTMs
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Learning to forecast vegetation greenness at fine resolution over Africa with ConvLSTMs

            Dez 2, 2022

            Sprecher:innen

            CR

            Claire Robin

            Sprecher:in · 0 Follower:innen

            CR

            Christian Requena-Mesa

            Sprecher:in · 0 Follower:innen

            VB

            Vitus Benson

            Sprecher:in · 0 Follower:innen

            Über

            Forecasting the state of vegetation in response to climate and weather events is a major challenge. Its implementation will prove crucial in predicting crop yield, forest damage, or more generally the impact on ecosystems services relevant for socio-economic functioning, which if absent can lead to humanitarian disasters. Vegetation status depends on weather and environmental conditions that modulate complex ecological processes taking place at several timescales. Interactions between vegetation…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 961 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Towards Low Cost Automated Monitoring of Life Below Water to De-risk Ocean-Based Carbon Dioxide Removal and Clean Power
            04:45
            Guaranteed Conservation of Momentum for Learning Particle-based Fluid Dynamics
            04:26

            Guaranteed Conservation of Momentum for Learning Particle-based Fluid Dynamics

            Lukas Prantl, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            ClimbQ: Class Imbalanced Quantization Enabling Robustness on Efficient Inferences
            05:27

            ClimbQ: Class Imbalanced Quantization Enabling Robustness on Efficient Inferences

            Ting-An Chen, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Continuous-time Bayesian Neural Network for Fast Training-free Test-time Adaptation
            05:09

            Continuous-time Bayesian Neural Network for Fast Training-free Test-time Adaptation

            Hengguan Huang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Fairness Transferability Subject to Bounded Distribution Shift
            03:59

            Fairness Transferability Subject to Bounded Distribution Shift

            Yatong Chen, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            On the Unreasonable Effectiveness of Federated Averaging with Heterogenous Data
            15:40

            On the Unreasonable Effectiveness of Federated Averaging with Heterogenous Data

            Jianyu Wang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen