Další
Živý přenos začne již brzy!
Živý přenos již skončil.
Prezentace ještě nebyla nahrána!
  • title: Adaptive Bias Correction for Improved Subseasonal Forecasting
      0:00 / 0:00
      • Nahlásit chybu
      • Nastavení
      • Playlisty
      • Záložky
      • Titulky Off
      • Rychlost přehrávání
      • Kvalita
      • Nastavení
      • Debug informace
      • Server sl-yoda-v2-stream-002-alpha.b-cdn.net
      • Velikost titulků Střední
      • Záložky
      • Server
      • sl-yoda-v2-stream-002-alpha.b-cdn.net
      • sl-yoda-v2-stream-002-beta.b-cdn.net
      • 1001562353.rsc.cdn77.org
      • 1075090661.rsc.cdn77.org
      • Titulky
      • Off
      • English
      • Rychlost přehrávání
      • Kvalita
      • Velikost titulků
      • Velké
      • Střední
      • Malé
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      Moje playlisty
        Záložky
          00:00:00
            Adaptive Bias Correction for Improved Subseasonal Forecasting
            • Nastavení
            • Sync diff
            • Kvalita
            • Nastavení
            • Server
            • Kvalita
            • Server

            Adaptive Bias Correction for Improved Subseasonal Forecasting

            2. prosince 2022

            Řečníci

            SM

            Soukayna Mouatadid

            Sprecher:in · 0 Follower:innen

            PO

            Paulo Orenstein

            Sprecher:in · 0 Follower:innen

            GF

            Genevieve Flaspohler

            Sprecher:in · 0 Follower:innen

            O prezentaci

            Subseasonal forecasting — predicting temperature and precipitation 2 to 6 weeks ahead — is critical for effective water allocation, wildfire management, and drought and flood mitigation. Recent international research efforts have advanced the subseasonal capabilities of operational dynamical models, yet temperature and precipitation prediction skills remains poor, partly due to stubborn errors in representing atmospheric dynamics and physics inside dynamical models. To counter these errors, we i…

            Organizátor

            N2
            N2

            NeurIPS 2022

            Konto · 961 Follower:innen

            Baví vás formát? Nechte SlidesLive zachytit svou akci!

            Profesionální natáčení a streamování po celém světě.

            Sdílení

            Doporučená videa

            Prezentace na podobné téma, kategorii nebo přednášejícího

            Intelligent transportation systems - ACFR
            37:30

            Intelligent transportation systems - ACFR

            Stewart Worrall

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Geometric Knowledge Distillation: Topology Compression for Graph Neural Networks
            04:34

            Geometric Knowledge Distillation: Topology Compression for Graph Neural Networks

            Chenxiao Yang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Taming Fat-Tailed (“Heavier-Tailed” with Potentially Infinite Variance) Noise in Federated Learning
            04:57

            Taming Fat-Tailed (“Heavier-Tailed” with Potentially Infinite Variance) Noise in Federated Learning

            Haibo Yang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Friendly Noise against Adversarial Noise: A Powerful Defense against Data Poisoning Attack
            04:20

            Friendly Noise against Adversarial Noise: A Powerful Defense against Data Poisoning Attack

            Tian Yu Liu, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            When are Local Queries Useful for Robust Learning?
            07:03

            When are Local Queries Useful for Robust Learning?

            Pascale Gourdeau, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Generating multivariate time series with COmmon Source Coordinated GAN (COSCI-GAN)
            04:45

            Generating multivariate time series with COmmon Source Coordinated GAN (COSCI-GAN)

            Ali Seyfi, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Zajímají Vás podobná videa? Sledujte NeurIPS 2022