2. prosince 2022
Sprecher:in · 0 Follower:innen
Sprecher:in · 0 Follower:innen
Multi-channel satellite imagery, from stacked spectral bands or spatiotemporal data, have meaningful representations for various atmospheric properties. Combining these features in an effective manner to create a performant and trustworthy model is of utmost importance to forecasters. Neural networks show promise, yet suffer from unintuitive computations, fusion of high-level features, and may be limited by the quantity of available data. In this work, we leverage the scattering transform to extract high-level features without additional trainable parameters and introduce a separation scheme to bring attention to independent input channels. Experiments show promising results on estimating tropical cyclone intensity and predicting the occurrence of lightning from satellite imagery.Multi-channel satellite imagery, from stacked spectral bands or spatiotemporal data, have meaningful representations for various atmospheric properties. Combining these features in an effective manner to create a performant and trustworthy model is of utmost importance to forecasters. Neural networks show promise, yet suffer from unintuitive computations, fusion of high-level features, and may be limited by the quantity of available data. In this work, we leverage the scattering transform to ext…
Konto · 961 Follower:innen
Profesionální natáčení a streamování po celém světě.
Prezentace na podobné téma, kategorii nebo přednášejícího