Explainable Multi-Agent Recommendation System for Energy-Efficient Decision Support in Smart Homes

Dec 2, 2022



Transparent, understandable, and persuasive recommendations support the electricity consumers’ behavioral change to tackle the energy efficiency problem. This paper proposes an explainable multi-agent recommendation system for load shifting for household appliances. First, we extend a novel multi-agent approach by designing an Explainability Agent that provides explainable recommendations for optimal appliance scheduling in a textual and visual manner. Second, we enhance the predictive capacity of other agents by including weather data and applying state-of-the-art models (i.e., k-nearest-neighbours, extreme gradient boosting, adaptive boosting, random forest, logistic regression, and explainable boosting machines). Since we want to help the user understand a single recommendation, we focus on local explainability approaches. In particular, we apply post-model approaches LIME (local, interpretable, model-agnostic explanation) and SHAP (Shapley additive explanations) as model-agnostic tools that can explain the predictions of the chosen classifiers. We further provide an overview of the predictive and explainability performance. Our results show a substantial improvement in the performance of the multi-agent system while at the same time opening up the “black box” of recommendations. To show the pathway to positive impact regarding climate change, we provide a discussion on the implications and scaling potential of the suggested approach. For instance, we show that 2 GWh of electricity (that corresponds to 0.87 kilotons of CO2 emissions) could be saved in 2023 in Germany when utilizing our approach. In 2026 the savings would be 5 GWh of electricity and 2 kilotons of CO2 emissions.


Store presentation

Should this presentation be stored for 1000 years?

How do we store presentations

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%


Recommended Videos

Presentations on similar topic, category or speaker

Interested in talks like this? Follow NeurIPS 2022