Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Is Model Ensemble Necessary? Model-based RL via a Single Model with Lipschitz Regularized Value Function
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-005-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-005-alpha.b-cdn.net
      • sl-yoda-v2-stream-005-beta.b-cdn.net
      • 1034628162.rsc.cdn77.org
      • 1409346856.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Is Model Ensemble Necessary? Model-based RL via a Single Model with Lipschitz Regularized Value Function
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Is Model Ensemble Necessary? Model-based RL via a Single Model with Lipschitz Regularized Value Function

            Dez 2, 2022

            Sprecher:innen

            RZ

            Ruijie Zheng

            Sprecher:in · 0 Follower:innen

            XW

            Xiyao Wang

            Sprecher:in · 0 Follower:innen

            HX

            Huazhe Xu

            Sprecher:in · 0 Follower:innen

            Über

            Probabilistic dynamics model ensemble is widely used in existing model-based reinforcement learning methods as it outperforms a single dynamics model in both asymptotic performance and sample efficiency. In this paper, we provide both practical and theoretical insights on the empirical success of the probabilistic dynamics model ensemble through the lens of Lipschitz continuity. We find that, for a value function, the stronger the Lipschitz condition is, the smaller the gap between the true dyna…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 961 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            InsNet: An Efficient, Flexible, and Performant Insertion-based Text Generation Model
            04:28

            InsNet: An Efficient, Flexible, and Performant Insertion-based Text Generation Model

            Sidi Lu, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Matching in Multi-arm Bandit with Collision
            04:06

            Matching in Multi-arm Bandit with Collision

            Yirui Zhang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Bridging the Gap Between Coulomb GAN and Gradient-regularized WGAN
            13:07

            Bridging the Gap Between Coulomb GAN and Gradient-regularized WGAN

            Siddarth Asokan, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            GenSDF: Two-Stage Learning of Generalizable Signed Distance Functions
            05:00

            GenSDF: Two-Stage Learning of Generalizable Signed Distance Functions

            Gene Chou, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Online PAC-Bayes Learning
            05:01

            Online PAC-Bayes Learning

            Maxime Haddouche, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Adaptive Oracle-Efficient Online Learning
            04:39

            Adaptive Oracle-Efficient Online Learning

            Guanghui Wang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen