Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: In the ZONE: Measuring difficulty and progression in curriculum generation
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-002-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-002-alpha.b-cdn.net
      • sl-yoda-v2-stream-002-beta.b-cdn.net
      • 1001562353.rsc.cdn77.org
      • 1075090661.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            In the ZONE: Measuring difficulty and progression in curriculum generation
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            In the ZONE: Measuring difficulty and progression in curriculum generation

            Dez 2, 2022

            Sprecher:innen

            RW

            Rose Wang

            Sprecher:in · 0 Follower:innen

            JM

            Jesse Mu

            Sprecher:in · 1 Follower:in

            DA

            Dilip Arumugam

            Sprecher:in · 0 Follower:innen

            Über

            A common strategy in curriculum generation for reinforcement learning is to train a teacher network to generate tasks that enable student learning. But, what kind of tasks enables this? One answer is tasks belonging to a student's zone of proximal development (ZPD), a concept from developmental psychology. These are tasks that are not too easy and not too hard for the student. Albeit intuitive, ZPD is not well understood computationally. We propose ZONE, a novel computational framework that oper…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 961 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Hyper-Representations as Generative Models: Sampling Unseen Neural Network Weights
            00:58

            Hyper-Representations as Generative Models: Sampling Unseen Neural Network Weights

            Konstantin Schürholt, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Fast and Precise: Adjusting Planning Horizon with Adaptive Subgoal Search
            04:54

            Fast and Precise: Adjusting Planning Horizon with Adaptive Subgoal Search

            Michał Zawalski, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Leveraging Factored Action Spaces for Efficient Offline Reinforcement Learning in Healthcare
            04:55

            Leveraging Factored Action Spaces for Efficient Offline Reinforcement Learning in Healthcare

            Shengpu Tang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Look Around and Refer: 2D Synthetic Semantics Knowledge Distillation for 3D Visual Grounding
            06:04

            Look Around and Refer: 2D Synthetic Semantics Knowledge Distillation for 3D Visual Grounding

            Eslam Mohamed Bakr, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Sound and Complete Incorporation wit Latent Variables Given Local Background Knowledge
            02:49

            Sound and Complete Incorporation wit Latent Variables Given Local Background Knowledge

            Tian-Zuo Wang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Thinking Outside the Ball: Optimal Learning with Gradient Descent for Generalized Linear Stochastic Convex Optimization
            05:07

            Thinking Outside the Ball: Optimal Learning with Gradient Descent for Generalized Linear Stochastic Convex Optimization

            Idan Amir, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen