Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: One-shot Visual Imitation via Attributed Waypoints and Demonstration Augmentation
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-005-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-005-alpha.b-cdn.net
      • sl-yoda-v2-stream-005-beta.b-cdn.net
      • 1034628162.rsc.cdn77.org
      • 1409346856.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            One-shot Visual Imitation via Attributed Waypoints and Demonstration Augmentation
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            One-shot Visual Imitation via Attributed Waypoints and Demonstration Augmentation

            Dez 2, 2022

            Sprecher:innen

            MC

            Matthew Chang

            Sprecher:in · 0 Follower:innen

            SG

            Saurabh Gupta

            Sprecher:in · 0 Follower:innen

            Über

            In this paper, we analyze the behavior of existing techniques and design new solutions for the problem of one-shot visual imitation. In this setting, an agent must solve a novel instance of a novel task given just a single visual demonstration. Our analysis reveals that current methods fall short because of three errors: the DAgger problem arising from purely offline training, last centimeter errors in interacting with objects, and mis-fitting to the task context rather than to the actual task.…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 961 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Lightweight Protein Engineering with Equivariant Graph Representation Learning
            02:08

            Lightweight Protein Engineering with Equivariant Graph Representation Learning

            Bingxin Zhou, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            One-Inlier is First: Towards Efficient Position Encoding for Point Cloud Registration
            00:55

            One-Inlier is First: Towards Efficient Position Encoding for Point Cloud Registration

            Fan Yang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Quantization-aware Policy Distillation (QPD)
            05:02

            Quantization-aware Policy Distillation (QPD)

            Thomas Avé, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Machine Learning on Graphs: A Model and Comprehensive Taxonomy
            00:52

            Machine Learning on Graphs: A Model and Comprehensive Taxonomy

            Bryan Perozzi, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Panel Discussion
            48:14

            Panel Discussion

            Cynthia Rudin, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Semantic Supervision for few-shot generalization and personalization
            30:36

            Semantic Supervision for few-shot generalization and personalization

            Karthik Narasimhan, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen