Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Domain Invariant Q-Learning for Model-Free Robust Continuous Control under Visual Distractions
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-003-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-003-alpha.b-cdn.net
      • sl-yoda-v2-stream-003-beta.b-cdn.net
      • 1544410162.rsc.cdn77.org
      • 1005514182.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Domain Invariant Q-Learning for Model-Free Robust Continuous Control under Visual Distractions
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Domain Invariant Q-Learning for Model-Free Robust Continuous Control under Visual Distractions

            Dez 2, 2022

            Sprecher:innen

            TD

            Tom Dupuis

            Sprecher:in · 0 Follower:innen

            JR

            Jaonary Rabarisoa

            Sprecher:in · 0 Follower:innen

            QCP

            Quoc Cuong Pham

            Sprecher:in · 0 Follower:innen

            Über

            End-to-end reinforcement learning on images showed significant performance progress in the recent years, especially with regularization to value estimation brought by data augmentation <cit.>. At the same time, domain randomization and representation learning helped push the limits of these algorithms in visually diverse environments, full of distractors and spurious noise, making RL more robust to unrelated visual features. We present DIQL, a method that combines risk invariant regulariz…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 961 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Imitation Is Not Enough:  Robustifying Imitation with Reinforcement Learning for Challenging Driving Scenarios
            03:09

            Imitation Is Not Enough: Robustifying Imitation with Reinforcement Learning for Challenging Driving Scenarios

            Yiren Lu, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Information-Theoretic Methods in the Study of the Lexicon
            29:42

            Information-Theoretic Methods in the Study of the Lexicon

            Ryan Cotterell

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Multi-block-Single-probe Variance Reduced Estimator for Coupled Compositional Optimization
            01:00

            Multi-block-Single-probe Variance Reduced Estimator for Coupled Compositional Optimization

            Wei Jiang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Perceptual Attacks of No-Reference Image Quality Models with Human-in-the-Loop
            01:03

            Perceptual Attacks of No-Reference Image Quality Models with Human-in-the-Loop

            Weixia Zhang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Contributed talk session 1
            26:45

            Contributed talk session 1

            Gabriele Corso, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen