Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Hypernetwork-PPO for Continual Reinforcement Learning
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-010-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-010-alpha.b-cdn.net
      • sl-yoda-v2-stream-010-beta.b-cdn.net
      • 1759419103.rsc.cdn77.org
      • 1016618226.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Hypernetwork-PPO for Continual Reinforcement Learning
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Hypernetwork-PPO for Continual Reinforcement Learning

            Dez 2, 2022

            Sprecher:innen

            PS

            Philemon Schöpf

            Sprecher:in · 0 Follower:innen

            SA

            Sayantan Auddy

            Sprecher:in · 0 Follower:innen

            JH

            Jakob Hollenstein

            Sprecher:in · 0 Follower:innen

            Über

            Continually learning new capabilities in different environments, and being ableto solve multiple complex tasks is of great importance for many robotics appli-cations. Modern reinforcement learning algorithms such as Proximal Policy Op-timization can successfully handle surprisingly difficult tasks, but are generallynot suited for multi-task or continual learning. Hypernetworks are a promisingapproach for avoiding catastrophic forgetting, and have previously been used suc-cessfully for continual…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 961 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            [Re] Contrastive Learning of Socially-aware Motion Representations
            04:58

            [Re] Contrastive Learning of Socially-aware Motion Representations

            Roopsa Sen, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Measuring and Reducing Model Update Regression in Structured Prediction for NLP
            05:07

            Measuring and Reducing Model Update Regression in Structured Prediction for NLP

            Deng Cai, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Neural Surface Reconstruction of Dynamic Scenes with Monocular RGB-D Camera
            00:59

            Neural Surface Reconstruction of Dynamic Scenes with Monocular RGB-D Camera

            Hongrui Cai, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Towards Understanding the Mixture-of-Experts Layer in Deep Learning
            04:41

            Towards Understanding the Mixture-of-Experts Layer in Deep Learning

            Zixiang Chen, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Geo-SIC: Learning Deformable Geometric Shapes in Deep Image Classifiers
            05:00

            Geo-SIC: Learning Deformable Geometric Shapes in Deep Image Classifiers

            Jian Wang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Descent Steps of a Relation-Aware Energy Produce Heterogeneous Graph Neural Networks
            06:06

            Descent Steps of a Relation-Aware Energy Produce Heterogeneous Graph Neural Networks

            Hongjoon Ahn, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen