Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Efficient Multi-Task Reinforcement Learning via Selective Behavior Sharing
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-007-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-007-alpha.b-cdn.net
      • sl-yoda-v2-stream-007-beta.b-cdn.net
      • 1678031076.rsc.cdn77.org
      • 1932936657.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Efficient Multi-Task Reinforcement Learning via Selective Behavior Sharing
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Efficient Multi-Task Reinforcement Learning via Selective Behavior Sharing

            Dez 2, 2022

            Sprecher:innen

            GZ

            Grace Zhang

            Sprecher:in · 0 Follower:innen

            AJ

            Ayush Jain

            Sprecher:in · 0 Follower:innen

            IH

            Injune Hwang

            Sprecher:in · 0 Follower:innen

            Über

            The ability to leverage shared behaviors between tasks is critical for sample efficient multi-task reinforcement learning (MTRL). Prior approaches based on parameter sharing or policy distillation share behaviors uniformly across tasks and states or focus on learning one optimal policy. Therefore, they are fundamentally limited when tasks have conflicting behaviors because no one optimal policy exists. Our key insight is that, we can instead share exploratory behavior which can be helpful even w…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 961 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Multi-Agent Reinforcement Learning for Microprocessor Design Space Exploration
            09:52

            Multi-Agent Reinforcement Learning for Microprocessor Design Space Exploration

            Srivatsan Krishnan, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            GLOBEM: Multi-Year Datasets for Longitudinal Human Behavior Modeling Generalization
            05:01

            GLOBEM: Multi-Year Datasets for Longitudinal Human Behavior Modeling Generalization

            Xuhai Xu, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Dynamic Collaborative Multi-Agent Reinforcement Learning Communication for Autonomous Drone Reforestation
            05:00

            Dynamic Collaborative Multi-Agent Reinforcement Learning Communication for Autonomous Drone Reforestation

            Philipp D. Siedler

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Training Spiking Neural Networks with Event-driven Backpropagation
            05:15

            Training Spiking Neural Networks with Event-driven Backpropagation

            Yaoyu Zhu, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Spatially Sparse Inference for Deep Generative Image Editing
            04:51

            Spatially Sparse Inference for Deep Generative Image Editing

            Muyang Li, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Mechanisms to Incentivize Data Sharing
            09:01

            Mechanisms to Incentivize Data Sharing

            Sai Praneeth Karimireddy, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen