Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Better state exploration using action sequence equivalence
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-004-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-004-alpha.b-cdn.net
      • sl-yoda-v2-stream-004-beta.b-cdn.net
      • 1685195716.rsc.cdn77.org
      • 1239898752.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Better state exploration using action sequence equivalence
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Better state exploration using action sequence equivalence

            Dez 2, 2022

            Sprecher:innen

            NG

            Nathan Grinsztajn

            Sprecher:in · 0 Follower:innen

            TJ

            Toby Johnstone

            Sprecher:in · 0 Follower:innen

            JF

            Johan Ferret

            Sprecher:in · 0 Follower:innen

            Über

            Incorporating prior knowledge in reinforcement learning algorithms is mainly an open question. Even when insights about the environment dynamics are available, reinforcement learning is traditionally used in a tabula rasa setting and must explore and learn everything from scratch.In this paper, we consider the problem of exploiting priors about action sequence equivalence: that is, when different sequences of actions produce the same effect.We propose a new local exploration strategy calibrated…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 961 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            LOCA: Learning Operators with Coupled Attention
            05:04

            LOCA: Learning Operators with Coupled Attention

            Georgios Kissas

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Physically-Based Face Rendering for NIR-VIS Face Recognition
            04:43

            Physically-Based Face Rendering for NIR-VIS Face Recognition

            Yunqi Miao, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            MAtt: A Manifold Attention Network for EEG Decoding
            04:54

            MAtt: A Manifold Attention Network for EEG Decoding

            Yue-Ting Pan, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Unsupervised Domain Adaptation for Semantic Segmentation using Depth Distribution
            04:50

            Unsupervised Domain Adaptation for Semantic Segmentation using Depth Distribution

            Quanliang Wu, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Toward a realistic model of speech processing in the brain with self-supervised learning
            04:47

            Toward a realistic model of speech processing in the brain with self-supervised learning

            Juliette Millet, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Dynamic Sparse Network for Time Series Classification: Learning What to “See”
            05:13

            Dynamic Sparse Network for Time Series Classification: Learning What to “See”

            Qiao Xiao, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen