Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Variational Reparametrized Policy Learning with Differentiable Physics
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-008-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-008-alpha.b-cdn.net
      • sl-yoda-v2-stream-008-beta.b-cdn.net
      • 1159783934.rsc.cdn77.org
      • 1511376917.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Variational Reparametrized Policy Learning with Differentiable Physics
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Variational Reparametrized Policy Learning with Differentiable Physics

            Dez 2, 2022

            Sprecher:innen

            ZH

            Zhiao Huang

            Sprecher:in · 0 Follower:innen

            LL

            Litian Liang

            Sprecher:in · 0 Follower:innen

            ZL

            Zhan Ling

            Sprecher:in · 0 Follower:innen

            Über

            We study the problem of policy parameterization for reinforcement learning (RL) with high-dimensional continuous action space. Our goal is to find a good way to parameterize the policy of continuous RL as a multi-modality distribution. To this end, we propose to treat the continuous RL policy as a generative model over the distribution of optimal trajectories. We use a diffusion process-like strategy to model the policy and derive a novel variational bound which is the optimization objective to…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 961 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            ProofNet: A Benchmark for Formal Theorem Proving and Autoformalization
            24:41

            ProofNet: A Benchmark for Formal Theorem Proving and Autoformalization

            Zhangir Azerbayev, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Closing Remarks
            08:36

            Closing Remarks

            Miguel Felipe Arevalo-Castiblanco, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Bayesian Active Learning with Fully Bayesian Gaussian Processes
            04:53

            Bayesian Active Learning with Fully Bayesian Gaussian Processes

            Christoffer Riis, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Closing remarks
            01:52

            Closing remarks

            Konstantina Palla

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Real-World Applications and Considerations of Lifelong Learning
            20:39

            Real-World Applications and Considerations of Lifelong Learning

            Tyler L. Hayes

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 1 = 0.1%

            Transformer-based World Models Are Happy With 100k Interactions
            04:39

            Transformer-based World Models Are Happy With 100k Interactions

            Jan Robine, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen