Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Offline Q-learning on Diverse Multi-Task Data Both Scales And Generalizes
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-009-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-009-alpha.b-cdn.net
      • sl-yoda-v2-stream-009-beta.b-cdn.net
      • 1766500541.rsc.cdn77.org
      • 1441886916.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Offline Q-learning on Diverse Multi-Task Data Both Scales And Generalizes
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Offline Q-learning on Diverse Multi-Task Data Both Scales And Generalizes

            Dez 2, 2022

            Sprecher:innen

            AK

            Aviral Kumar

            Sprecher:in · 10 Follower:innen

            RA

            Rishabh Agarwal

            Sprecher:in · 0 Follower:innen

            XG

            Xinyang Geng

            Sprecher:in · 0 Follower:innen

            Über

            The potential of offline reinforcement learning (RL) is that high-capacity models trained on large, heterogeneous datasets can lead to agents that generalize broadly, analogously to similar advances in vision and NLP. However, recent works argue that offline RL methods encounter unique challenges to scaling up model capacity. Drawing on the learnings from these works, we re-examine previous design choices and find that with appropriate choices: ResNets, cross-entropy based distributional backups…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 961 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Tutorial: Data Compression with Machine Learning
            1:52:16

            Tutorial: Data Compression with Machine Learning

            Karen Ullrich, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Picking on the Same Person: Does Algorithmic Monoculture lead to Outcome Homogenization?
            06:30

            Picking on the Same Person: Does Algorithmic Monoculture lead to Outcome Homogenization?

            Rishi Bommasani, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Target-independent XLA optimization using Reinforcement Learning
            05:16

            Target-independent XLA optimization using Reinforcement Learning

            Milan Ganai, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Robust Calibration with Multi-domain Temperature Scaling
            04:51

            Robust Calibration with Multi-domain Temperature Scaling

            Yaodong Yu, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            On the Representation Collapse of Sparse Mixture of Experts
            03:53

            On the Representation Collapse of Sparse Mixture of Experts

            Zewen Chi, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            A Classification of G-invariant Shallow Neural Networks
            04:17

            A Classification of G-invariant Shallow Neural Networks

            Devanshu Agrawal, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen