Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Noisy Symbolic Abstractions for Deep RL: A case study with Reward Machines
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-001-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-001-alpha.b-cdn.net
      • sl-yoda-v2-stream-001-beta.b-cdn.net
      • 1824830694.rsc.cdn77.org
      • 1979322955.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Noisy Symbolic Abstractions for Deep RL: A case study with Reward Machines
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Noisy Symbolic Abstractions for Deep RL: A case study with Reward Machines

            Dez 2, 2022

            Sprecher:innen

            ACL

            Andrew C. Li

            Sprecher:in · 0 Follower:innen

            ZC

            Zizhao Chen

            Sprecher:in · 0 Follower:innen

            PV

            Pashootan Vaezipoor

            Sprecher:in · 0 Follower:innen

            Über

            Natural and formal languages provide an effective mechanism for humans to specify instructions and reward functions. We investigate how to generate policies via RL when reward functions are specified in a symbolic language captured by Reward Machines, an increasingly popular automaton-inspired structure. We are interested in the case where the mapping of environment state to the symbolic Reward Machine vocabulary is noisy. We formulate the problem of policy learning in Reward Machines with noisy…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 961 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Experimental Design for Linear Functionals in Reproducing Kernel Hilbert Spaces
            04:54

            Experimental Design for Linear Functionals in Reproducing Kernel Hilbert Spaces

            Mojmír Mutný, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Visual Clues: Bridging Vision and Language Foundations for Image Paragraph Captioning
            05:02

            Visual Clues: Bridging Vision and Language Foundations for Image Paragraph Captioning

            Yujia Xie, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Self-Similarity Priors: Neural Collages as Differentiable Fractal Representations
            05:55

            Self-Similarity Priors: Neural Collages as Differentiable Fractal Representations

            Michael Poli, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Minimax Optimal Best Fixed-Budget Best Arm Identification in Linear Bandits
            06:25

            Minimax Optimal Best Fixed-Budget Best Arm Identification in Linear Bandits

            Junwen Yang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Active Learning with Safety Constraints
            05:43

            Active Learning with Safety Constraints

            Romain Camilleri, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Distinguishing Learning Rules with Brain Machine Interfaces
            04:54

            Distinguishing Learning Rules with Brain Machine Interfaces

            Jacob Portes, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen