Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: On the Feasibility of Cross-Task Transfer with Model-Based Reinforcement Learning
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-007-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-007-alpha.b-cdn.net
      • sl-yoda-v2-stream-007-beta.b-cdn.net
      • 1678031076.rsc.cdn77.org
      • 1932936657.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            On the Feasibility of Cross-Task Transfer with Model-Based Reinforcement Learning
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            On the Feasibility of Cross-Task Transfer with Model-Based Reinforcement Learning

            Dez 2, 2022

            Sprecher:innen

            YX

            Yifan Xu

            Sprecher:in · 0 Follower:innen

            NH

            Nicklas Hansen

            Sprecher:in · 0 Follower:innen

            ZW

            Zirui Wang

            Sprecher:in · 1 Follower:in

            Über

            Reinforcement Learning (RL) algorithms can solve challenging control problems directly from image observations, but they often require millions of environment interactions to do so. Recently, model-based RL algorithms have greatly improved sample-efficiency by concurrently learning an internal model of the world, and supplementing real environment interactions with imagined rollouts for policy improvement. However, learning an effective model of the world from scratch is challenging, and in star…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 961 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Grounding Aleatoric Uncertainty in Unsupervised Environment Design
            04:53

            Grounding Aleatoric Uncertainty in Unsupervised Environment Design

            Minqi Jiang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Improving Certified Robustness via Statistical Learning with Logical Reasoning
            05:01

            Improving Certified Robustness via Statistical Learning with Logical Reasoning

            Zhuolin Yang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Finding and Listing Front-door Adjustment Sets
            04:34

            Finding and Listing Front-door Adjustment Sets

            Hyunchai Jeong, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Panel Discussion: The Fourth Workshop on AI for Humanitarian Assistance and Disaster Response
            31:14

            Panel Discussion: The Fourth Workshop on AI for Humanitarian Assistance and Disaster Response

            Thomas Manzini, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Multi-Environment Pretraining Enables Transfer to Action Limited Datasets
            05:01

            Multi-Environment Pretraining Enables Transfer to Action Limited Datasets

            David Venuto, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Boosting the Transferability of Adversarial Attacks with Reverse Adversarial Perturbation
            08:09

            Boosting the Transferability of Adversarial Attacks with Reverse Adversarial Perturbation

            Zeyu Qin, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen