Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Simplifying Model-based RL: Learning Representations, Latent-space Models, and Policies with One Objective
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-005-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-005-alpha.b-cdn.net
      • sl-yoda-v2-stream-005-beta.b-cdn.net
      • 1034628162.rsc.cdn77.org
      • 1409346856.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Simplifying Model-based RL: Learning Representations, Latent-space Models, and Policies with One Objective
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Simplifying Model-based RL: Learning Representations, Latent-space Models, and Policies with One Objective

            Dez 2, 2022

            Sprecher:innen

            RG

            Raj Ghugare

            Sprecher:in · 0 Follower:innen

            HB

            Homanga Bharadhwaj

            Sprecher:in · 0 Follower:innen

            BE

            Benjamin Eysenbach

            Sprecher:in · 0 Follower:innen

            Über

            While reinforcement learning (RL) methods that learn an internal model of the environment have the potential to be more sample efficient than their model-free counterparts, learning to model raw observations from high dimensional sensors can be challenging. Prior work has addressed this challenge by learning low-dimensional representation of observations through auxiliary objectives, such as reconstruction or value prediction. However, the alignment between these auxiliary objectives and the RL…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 961 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Over-squashing in GNNs: should we focus on the architecture or on the computational graph
            31:45

            Over-squashing in GNNs: should we focus on the architecture or on the computational graph

            Francesco Di Giovanni

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Name Change Policies: A Brief (Personal) Tour
            29:34

            Name Change Policies: A Brief (Personal) Tour

            Danica J. Sutherland

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            A Practical, Progressively-Expressive GNN
            06:00

            A Practical, Progressively-Expressive GNN

            Lingxiao Zhao, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            BackdoorBench: A Comprehensive Benchmark of Backdoor Learning
            04:25

            BackdoorBench: A Comprehensive Benchmark of Backdoor Learning

            Baoyuan Wu, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Online Deep Equilibrium Learning for Regularization for Denoising
            04:34

            Online Deep Equilibrium Learning for Regularization for Denoising

            Jiaming Liu, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Habitat Rearrangement Challenge
            13:38

            Habitat Rearrangement Challenge

            Andrew Szot, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen