Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Distributional deep Q-learning with CVaR regression
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-009-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-009-alpha.b-cdn.net
      • sl-yoda-v2-stream-009-beta.b-cdn.net
      • 1766500541.rsc.cdn77.org
      • 1441886916.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Distributional deep Q-learning with CVaR regression
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Distributional deep Q-learning with CVaR regression

            Dez 2, 2022

            Sprecher:innen

            MA

            Mastane Achab

            Sprecher:in · 0 Follower:innen

            RA

            Reda Alami

            Sprecher:in · 0 Follower:innen

            YADD

            Yasser Abdelaziz Dahou Djilali

            Sprecher:in · 0 Follower:innen

            Über

            Reinforcement learning (RL) allows an agent interacting sequentially with an environment to maximize its long-term return, in expectation. In distributional RL (DRL), the agent is also interested in the probability distribution of the return, not just its expected value. This so-called distributional perspective of RL has led to new algorithms with improved empirical performance. In this paper, we recall the atomic DRL (ADRL) framework based on atomic distributions projected via the Wasserstein-…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 961 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Near-Optimal Private and Scalable k-Clustering
            05:00

            Near-Optimal Private and Scalable k-Clustering

            Vincent Cohen-addad, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Physically-Constrained Adversarial Attacks on Brain-Machine Interfaces
            10:53

            Physically-Constrained Adversarial Attacks on Brain-Machine Interfaces

            Xiaying Wang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Why neural networks find simple solutions:  The many regularizers of geometric complexity
            04:58

            Why neural networks find simple solutions: The many regularizers of geometric complexity

            Benoit Dherin, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Adv-Attribute: Inconspicuous and Transferable Adversarial Attack on Face Recognition
            04:59

            Adv-Attribute: Inconspicuous and Transferable Adversarial Attack on Face Recognition

            Shuai Jia, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Exponentially Improving the Complexity of Simulating the Weisfeiler-Lehman Test with Graph Neural Networks
            04:58

            Exponentially Improving the Complexity of Simulating the Weisfeiler-Lehman Test with Graph Neural Networks

            Anders Aamand, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Efficient Frameworks for Generalized Low-Rank Matrix Bandit Problems
            05:02

            Efficient Frameworks for Generalized Low-Rank Matrix Bandit Problems

            Yue Kang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen