Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Value-based CTDE Methods in Symmetric Two-team Markov Game: from Cooperation to Team Competition
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-006-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-006-alpha.b-cdn.net
      • sl-yoda-v2-stream-006-beta.b-cdn.net
      • 1549480416.rsc.cdn77.org
      • 1102696603.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Value-based CTDE Methods in Symmetric Two-team Markov Game: from Cooperation to Team Competition
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Value-based CTDE Methods in Symmetric Two-team Markov Game: from Cooperation to Team Competition

            Dez 2, 2022

            Sprecher:innen

            PL

            Pascal Leroy

            Sprecher:in · 0 Follower:innen

            JP

            Jonathan Pisane

            Sprecher:in · 0 Follower:innen

            DE

            Damien Ernst

            Sprecher:in · 0 Follower:innen

            Über

            In this paper, we identify the best training scenario to train a team of agents to compete against multiple possible strategies of opposing teams.We restrict ourselves to the case of a symmetric two-team Markov game which is a competition between two symmetric teams.We evaluate cooperative value-based methods in a mixed cooperative-competitive environment.We selected three training methods based on the centralised training and decentralised execution (CTDE) paradigm: QMIX, MAVEN and QVMix.To tra…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 961 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Learning from Small Samples
            04:40

            Learning from Small Samples

            Tao Liu, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Data Science & Inequalities
            08:37

            Data Science & Inequalities

            Kamaldeep Bhui

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            New Lower Bounds for Private Estimation and a Generalized Fingerprinting Lemma
            04:02

            New Lower Bounds for Private Estimation and a Generalized Fingerprinting Lemma

            Gautam Kamath, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Adversarial training for high-stakes reliability
            04:48

            Adversarial training for high-stakes reliability

            Daniel Ziegler, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Para-CFlow: C^k-universal diffeomorphism Approximators as Superior Neural Surrogates
            02:37

            Para-CFlow: C^k-universal diffeomorphism Approximators as Superior Neural Surrogates

            Junlong Lyu, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            NeurlPS 2002 Workshop: New Frontiers in Graph Learning
            13:16

            NeurlPS 2002 Workshop: New Frontiers in Graph Learning

            Jiaxuan You, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen