Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: MoDem: Accelerating Visual Model-Based Reinforcement Learning with Demonstrations
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-004-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-004-alpha.b-cdn.net
      • sl-yoda-v2-stream-004-beta.b-cdn.net
      • 1685195716.rsc.cdn77.org
      • 1239898752.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            MoDem: Accelerating Visual Model-Based Reinforcement Learning with Demonstrations
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            MoDem: Accelerating Visual Model-Based Reinforcement Learning with Demonstrations

            Dez 2, 2022

            Sprecher:innen

            NH

            Nicklas Hansen

            Sprecher:in · 0 Follower:innen

            YL

            Yixin Lin

            Sprecher:in · 0 Follower:innen

            HS

            Hao Su

            Sprecher:in · 0 Follower:innen

            Über

            Poor sample efficiency continues to be the primary challenge for deployment of deep Reinforcement Learning (RL) algorithms for real-world applications, and in particular for visuo-motor control. Model-based RL has the potential to be highly sample efficient by concurrently learning a world model and using synthetic rollouts for planning and policy improvement. However, in practice, sample-efficient learning with model-based RL is bottlenecked by the exploration challenge. In this work, we find t…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 961 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Contrastive Language-Image Pre-Training with Knowledge Graphs
            05:04

            Contrastive Language-Image Pre-Training with Knowledge Graphs

            Xuran Pan, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Learning Dense Object Descriptors from Multiple Views for Low-shot Category Generalization
            04:55

            Learning Dense Object Descriptors from Multiple Views for Low-shot Category Generalization

            Stefan Stojanov, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Efficient Submodular Optimization under Noise: Local Search is Robust
            05:04

            Efficient Submodular Optimization under Noise: Local Search is Robust

            Lingxiao Huang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Counterfactual Temporal Point Processes
            04:54

            Counterfactual Temporal Point Processes

            Kimia Noorbakhsh, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            ProxSkip for Stochastic Variational Inequalities: A Federated Learning Algorithm for Provable Communication Acceleration
            05:23

            ProxSkip for Stochastic Variational Inequalities: A Federated Learning Algorithm for Provable Communication Acceleration

            Siqi Zhang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Differentially Private Online-to-Batch for Smooth Losses
            05:02

            Differentially Private Online-to-Batch for Smooth Losses

            Qinzi Zhang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen