Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Language Models Can Teach Themselves to Program Better
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-010-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-010-alpha.b-cdn.net
      • sl-yoda-v2-stream-010-beta.b-cdn.net
      • 1759419103.rsc.cdn77.org
      • 1016618226.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Language Models Can Teach Themselves to Program Better
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Language Models Can Teach Themselves to Program Better

            Dez 2, 2022

            Sprecher:innen

            PH

            Patrick Haluptzok

            Sprecher:in · 0 Follower:innen

            AK

            Adam Kalai

            Sprecher:in · 0 Follower:innen

            MB

            Matthew Bowers

            Sprecher:in · 0 Follower:innen

            Über

            Recent Language Models (LMs) achieve breakthrough performance in code generation when trained on human-authored problems, even solving some competitive-programming problems. Self-play has proven useful in games such as Go, and thus it is natural to ask whether LMs can generate their own instructive programming problems to improve their performance. We show that it is possible for an LM to synthesize programming problems and solutions, which are filtered for correctness by a Python interpreter. T…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 961 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            An Analysis of Social Biases Present in BERT Variants Across Multiple Languages
            10:35

            An Analysis of Social Biases Present in BERT Variants Across Multiple Languages

            Parishad BehnamGhader, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Streaming Radiance Fields for 3D Video Synthesis
            01:00

            Streaming Radiance Fields for 3D Video Synthesis

            Lingzhi Li, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Improving Out-of-Distribution Generalization by Adversarial Traing with Structured Priors
            00:58

            Improving Out-of-Distribution Generalization by Adversarial Traing with Structured Priors

            Qixun Wang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Causal feature selection in time series data
            32:11

            Causal feature selection in time series data

            Atalanti A. Mastakouri

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Learning Equivariant Segmentation with Instance-Unique Querying
            01:01

            Learning Equivariant Segmentation with Instance-Unique Querying

            Wenguan Wang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Global Convergence of Federated Learning for Mixed Regression
            05:00

            Global Convergence of Federated Learning for Mixed Regression

            Jiaming Xu, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen