Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Efficient Offline Policy Optimization with a Learned Model
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-004-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-004-alpha.b-cdn.net
      • sl-yoda-v2-stream-004-beta.b-cdn.net
      • 1685195716.rsc.cdn77.org
      • 1239898752.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Efficient Offline Policy Optimization with a Learned Model
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Efficient Offline Policy Optimization with a Learned Model

            Dez 2, 2022

            Sprecher:innen

            ZL

            Zichen Liu

            Sprecher:in · 0 Follower:innen

            SL

            Siyi Li

            Sprecher:in · 0 Follower:innen

            WSL

            Wee Sun Lee

            Sprecher:in · 1 Follower:in

            Über

            MuZero Unplugged presents a promising approach for offline policy learning from logged data. It conducts Monte-Carlo Tree Search (MCTS) with a learned model and leverages Reanalyze algorithm to learn purely from offline data. For good performance, MCTS requires accurate learned models and a large number of simulations, thus costing huge computing time. This paper investigates a few hypotheses where MuZero Unplugged may not work well under the offline RL settings, including 1) learning with limit…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 961 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Subsidiary Prototype Alignment for Universal Domain Adaptation
            03:39

            Subsidiary Prototype Alignment for Universal Domain Adaptation

            Jogendra Nath Kundu, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            ForestBench: Equitable Benchmarks for Monitoring, Reporting, and Verification of Nature-Based Solutions with Machine Learning
            04:40

            ForestBench: Equitable Benchmarks for Monitoring, Reporting, and Verification of Nature-Based Solutions with Machine Learning

            Lucas Czech, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Accelerating Perturbed Stochastic Iterates in Asynchronous Lock-Free Optimization
            04:33

            Accelerating Perturbed Stochastic Iterates in Asynchronous Lock-Free Optimization

            Kaiwen Zhou, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Q     A
            04:28

            Q A

            Sayak Paul, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Peripheral Vision Transformer
            05:03

            Peripheral Vision Transformer

            Juhong Min, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Rethinking Alignment in Video Super-Resolution Transformers
            05:28

            Rethinking Alignment in Video Super-Resolution Transformers

            Shuwei Shi, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen