Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Perturbed Quantile Regression for Distributional Reinforcement Learning
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-004-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-004-alpha.b-cdn.net
      • sl-yoda-v2-stream-004-beta.b-cdn.net
      • 1685195716.rsc.cdn77.org
      • 1239898752.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Perturbed Quantile Regression for Distributional Reinforcement Learning
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Perturbed Quantile Regression for Distributional Reinforcement Learning

            Dez 2, 2022

            Sprecher:innen

            TC

            Taehyun Cho

            Sprecher:in · 0 Follower:innen

            SH

            Seungyub Han

            Sprecher:in · 0 Follower:innen

            HL

            Heesoo Lee

            Sprecher:in · 0 Follower:innen

            Über

            Distributional reinforcement learning aims to learn distribution of return under stochastic environments. Since the learned distribution of return contains rich information about the stochasticity of the environment, previous studies have relied on descriptive statistics, such as standard deviation, for optimism in the face of uncertainty. However, using the uncertainty from an empirical distribution can hinder convergence and performance when exploring with the certain criterion that has an one…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 961 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Semi-Supervised Video Salient Object Detection Based on Uncertainty-Guided Pseudo Labels
            04:55

            Semi-Supervised Video Salient Object Detection Based on Uncertainty-Guided Pseudo Labels

            Yongri Piao, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Graph Neural Networks are Dynamic Programmers
            05:08

            Graph Neural Networks are Dynamic Programmers

            Andrew Dudzik, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Accelerating Open Science for AI in Heliophysics
            10:21

            Accelerating Open Science for AI in Heliophysics

            Dolores García, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Aligning Humans and Robots: Active Elicitation of Informative and Compatible Queries
            31:27

            Aligning Humans and Robots: Active Elicitation of Informative and Compatible Queries

            Dorsa Sadigh

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            A Greek Parliament Proceedings Dataset for Computational Linguistics and Political Analysis
            04:55

            A Greek Parliament Proceedings Dataset for Computational Linguistics and Political Analysis

            Konstantina Dritsa, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Myriad: a real-world testbed to bridge trajectory optimization and deep learning
            04:59

            Myriad: a real-world testbed to bridge trajectory optimization and deep learning

            Nikolaus H. R. Howe, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen