Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Co-Imitation: Learning Design and Behaviour by Imitation
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-002-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-002-alpha.b-cdn.net
      • sl-yoda-v2-stream-002-beta.b-cdn.net
      • 1001562353.rsc.cdn77.org
      • 1075090661.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Co-Imitation: Learning Design and Behaviour by Imitation
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Co-Imitation: Learning Design and Behaviour by Imitation

            Dez 2, 2022

            Sprecher:innen

            CR

            Chang Rajani

            Sprecher:in · 0 Follower:innen

            KA

            Karol Arndt

            Sprecher:in · 0 Follower:innen

            DB

            David Blanco-Mulero

            Sprecher:in · 0 Follower:innen

            Über

            The co-adaptation of robots has been a long-standing research endeavour with the goal of adapting both body and behaviour of a system for a given task, inspired by the natural evolution of animals. Co-adaptation has the potential to eliminate costly manual hardware engineering as well as improve the performance of systems.The standard approach to co-adaptation is to use a reward function for optimizing behaviour and morphology. However, defining and constructing such reward functions is notoriou…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 961 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Random Rank: The One and Only Strategyproof and Proportionally Fair Randomized Facility Location Mechanism
            04:55

            Random Rank: The One and Only Strategyproof and Proportionally Fair Randomized Facility Location Mechanism

            Haris Aziz, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Meta-Reward-Net: Implicitly Differentiable Reward Learning for Preference-based Reinforcement Learning
            03:25

            Meta-Reward-Net: Implicitly Differentiable Reward Learning for Preference-based Reinforcement Learning

            Runze Liu, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Towards Low Cost Automated Monitoring of Life Below Water to De-risk Ocean-Based Carbon Dioxide Removal and Clean Power
            04:45
            Machine Learning on Graphs: A Model and Comprehensive Taxonomy
            05:20

            Machine Learning on Graphs: A Model and Comprehensive Taxonomy

            Bryan Perozzi, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            [Re] Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction
            05:04

            [Re] Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction

            Urša Zrimšek

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Logical Activation Functions: Logit-space equivalents of Probabilistic Boolean Operators
            04:42

            Logical Activation Functions: Logit-space equivalents of Probabilistic Boolean Operators

            Scott C. Lowe, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen