EUCLID: Towards Efficient Unsupervised Reinforcement Learning with Multi-choice Dynamics Model

Dec 2, 2022

Speakers

About

Unsupervised reinforcement learning (URL) poses a promising paradigm to learn useful behaviors in a task-agnostic environment without the guidance of extrinsic rewards to facilitate the fast adaptation of various downstream tasks. Previous works focused on the pre-training in a model-free manner while lacking the study of transition dynamics modeling that leaves a large space for the improvement of sample efficiency in downstream tasks. To this end, we propose an Efficient Unsupervised Reinforcement Learning Framework with Multi-choice Dynamics model (EUCLID), which introduces a novel model-fused paradigm to jointly pre-train the dynamics model and unsupervised exploration policy in the pre-training phase, thus better leveraging the environmental samples and improving the downstream task sampling efficiency. However, constructing a generalizable model which captures the local dynamics under different behaviors remains a challenging problem. We introduce the multi-choice dynamics model that covers different local dynamics under different behaviors concurrently, which uses different heads to learn the state transition under different behaviors during unsupervised pre-training and selects the most appropriate head for prediction in the downstream task. Experimental results in the manipulation and locomotion domains demonstrate that EUCLID achieves state-of-the-art performance with high sample efficiency, basically solving the state-based URLB benchmark and reaching a mean normalized score of 104.0±1.2

Organizer

Like the format? Trust SlidesLive to capture your next event!

Professional recording and live streaming, delivered globally.

Sharing

Recommended Videos

Presentations on similar topic, category or speaker

Interested in talks like this? Follow NeurIPS 2022