Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: EUCLID: Towards Efficient Unsupervised Reinforcement Learning with Multi-choice Dynamics Model
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-006-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-006-alpha.b-cdn.net
      • sl-yoda-v2-stream-006-beta.b-cdn.net
      • 1549480416.rsc.cdn77.org
      • 1102696603.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            EUCLID: Towards Efficient Unsupervised Reinforcement Learning with Multi-choice Dynamics Model
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            EUCLID: Towards Efficient Unsupervised Reinforcement Learning with Multi-choice Dynamics Model

            Dez 2, 2022

            Sprecher:innen

            YY

            Yifu Yuan

            Řečník · 0 sledujících

            JH

            Jianye Hao

            Řečník · 0 sledujících

            FN

            Fei Ni

            Řečník · 0 sledujících

            Über

            Unsupervised reinforcement learning (URL) poses a promising paradigm to learn useful behaviors in a task-agnostic environment without the guidance of extrinsic rewards to facilitate the fast adaptation of various downstream tasks. Previous works focused on the pre-training in a model-free manner while lacking the study of transition dynamics modeling that leaves a large space for the improvement of sample efficiency in downstream tasks. To this end, we propose an Efficient Unsupervised Reinforce…

            Organisator

            N2
            N2

            NeurIPS 2022

            Účet · 961 sledujících

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Fast Learning of Multivariate Hawkes Processes via Frank-Wolfe
            02:03

            Fast Learning of Multivariate Hawkes Processes via Frank-Wolfe

            Renbo Zhao, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Quantum algorithms for sampling log-concave distributions and estimating normalizing constants
            04:29

            Quantum algorithms for sampling log-concave distributions and estimating normalizing constants

            Andrew Childs, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            BYOL-Explore: Exploration by Bootstrapped Prediction
            04:11

            BYOL-Explore: Exploration by Bootstrapped Prediction

            Zhaohan Guo, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Reinforcement Learning Explainability via Model Transforms
            03:16

            Reinforcement Learning Explainability via Model Transforms

            Mira Finkelstein, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Learning Energy Networks with Generalized Fenchel-Young Losses
            05:20

            Learning Energy Networks with Generalized Fenchel-Young Losses

            Mathieu Blondel, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Efficient Scheduling of Data Augmentation for Deep Reinforcement Learning
            05:00

            Efficient Scheduling of Data Augmentation for Deep Reinforcement Learning

            Byungchan Ko, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen