Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Time-Myopic Go-Explore: Learning A State Representation for the Go-Explore Paradigm
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-003-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-003-alpha.b-cdn.net
      • sl-yoda-v2-stream-003-beta.b-cdn.net
      • 1544410162.rsc.cdn77.org
      • 1005514182.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Time-Myopic Go-Explore: Learning A State Representation for the Go-Explore Paradigm
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Time-Myopic Go-Explore: Learning A State Representation for the Go-Explore Paradigm

            Dez 2, 2022

            Sprecher:innen

            MH

            Marc Höftmann

            Sprecher:in · 0 Follower:innen

            JR

            Jan Robine

            Sprecher:in · 0 Follower:innen

            SH

            Stefan Harmeling

            Sprecher:in · 0 Follower:innen

            Über

            Very large state spaces with a sparse reward signal are difficult to explore. The lack of a sophisticated guidance results in a poor performance for numerous reinforcement learning algorithms. In these cases, the commonly used random exploration is often not helpful. The literature shows that this kind of environments require enormous efforts to systematically explore large chunks of the state space. Learned state representations can help here to improve the search by providing semantic context…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 961 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Learning Efficient Vision Transformers via Fine-Grained Manifold Distillation
            04:39

            Learning Efficient Vision Transformers via Fine-Grained Manifold Distillation

            Zhiwei Hao, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Multi-Granularity Cross-modal Alignment for Generalized Medical Visual Representation Learning
            06:41

            Multi-Granularity Cross-modal Alignment for Generalized Medical Visual Representation Learning

            Fuying Wang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Myriad: a real-world testbed to bridge trajectory optimization and deep learning
            04:59

            Myriad: a real-world testbed to bridge trajectory optimization and deep learning

            Nikolaus H. R. Howe, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Deep Fourier Up-Sampling
            04:39

            Deep Fourier Up-Sampling

            Man Zhou, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Unsupervised Domain Adaptation for Semantic Segmentation using Depth Distribution
            04:50

            Unsupervised Domain Adaptation for Semantic Segmentation using Depth Distribution

            Quanliang Wu, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Driving SMARTS: Autonomous Driving Competition
            13:55

            Driving SMARTS: Autonomous Driving Competition

            Tianpei Yang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen