Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Distance-Sensitive Offline Reinforcement Learning
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-008-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-008-alpha.b-cdn.net
      • sl-yoda-v2-stream-008-beta.b-cdn.net
      • 1159783934.rsc.cdn77.org
      • 1511376917.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Distance-Sensitive Offline Reinforcement Learning
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Distance-Sensitive Offline Reinforcement Learning

            Dez 2, 2022

            Sprecher:innen

            JL

            Jianxiong Li

            Sprecher:in · 0 Follower:innen

            XZ

            Xianyuan Zhan

            Sprecher:in · 0 Follower:innen

            HX

            Haoran Xu

            Sprecher:in · 0 Follower:innen

            Über

            In offline reinforcement learning (RL), one detrimental issue to policy learning is the error accumulation of deep Q function in out-of-distribution (OOD) areas. Unfortunately, existing offline RL methods are often over-conservative, inevitably hurting generalization performance outside data distribution. In our study, one interesting observation is that deep Q functions approximate well inside the convex hull of training data. Inspired by this, we propose a new method, DOGE (Distance-sensitive…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 961 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Giga-scale Kernel Matrix-Vector Multiplication on GPU
            04:00

            Giga-scale Kernel Matrix-Vector Multiplication on GPU

            Robert Hu, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Learning Neural Acoustic Fields
            04:33

            Learning Neural Acoustic Fields

            Andrew Luo, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Language as Robot Middleware - Andy Zeng & Jacky Liang
            36:05

            Language as Robot Middleware - Andy Zeng & Jacky Liang

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Fast Instrument Learning with Faster Rates
            01:04

            Fast Instrument Learning with Faster Rates

            Ziyu Wang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Causal Identification under Markov Equivalence: Calculus, Algorithm, and Completeness
            05:01

            Causal Identification under Markov Equivalence: Calculus, Algorithm, and Completeness

            Amin Jaber, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            A Unified Statistical Learning Model for Rankings and Scores with Application to Grant Panel Review
            04:07

            A Unified Statistical Learning Model for Rankings and Scores with Application to Grant Panel Review

            Michael Pearce, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen