Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: GAGA: Deciphering Age-path of Generalized Self-paced Regularizer
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-008-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-008-alpha.b-cdn.net
      • sl-yoda-v2-stream-008-beta.b-cdn.net
      • 1159783934.rsc.cdn77.org
      • 1511376917.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            GAGA: Deciphering Age-path of Generalized Self-paced Regularizer
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            GAGA: Deciphering Age-path of Generalized Self-paced Regularizer

            Dez 6, 2022

            Sprecher:innen

            XQ

            Xingyu Qu

            Sprecher:in · 0 Follower:innen

            DL

            Diyang Li

            Sprecher:in · 0 Follower:innen

            XZ

            Xiaohan Zhao

            Sprecher:in · 0 Follower:innen

            Über

            Nowadays self-paced learning (SPL) is an important machine learning paradigm that mimics the cognitive process of humans and animals. The SPL regime involves a self-paced regularizer and a gradually increasing age parameter, which plays a key role in SPL but where to optimally terminate this process is still non-trivial to determine. A natural idea is to compute the solution path w.r.t. age parameter (i.e., age-path). However, current age-path algorithms are either limited to the simplest regula…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 962 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Predictive Coding beyond Gaussian Distributions
            01:08

            Predictive Coding beyond Gaussian Distributions

            Luca Pinchetti, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Pareto-Efficient Decision Agents
            13:31

            Pareto-Efficient Decision Agents

            Baiting Zhu, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Analyzing Lottery Ticket Hypothesis from PAC-Bayesian Theory Perspective
            05:00

            Analyzing Lottery Ticket Hypothesis from PAC-Bayesian Theory Perspective

            Keitaro Sakamoto, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Adversarial Attacks on Protein Language Models
            01:34

            Adversarial Attacks on Protein Language Models

            Ginevra Carbone, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Operative dimensions in unconstrained connectivity of recurrent neural networks
            04:39

            Operative dimensions in unconstrained connectivity of recurrent neural networks

            Renate Krause

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Panel Discussion - Workshop: Workshop on Machine Learning Safety
            45:45

            Panel Discussion - Workshop: Workshop on Machine Learning Safety

            Sharon Li, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen