Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Functional Neural Networks: Shift invariant models for functional data with applications to EEG classification
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-001-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-001-alpha.b-cdn.net
      • sl-yoda-v2-stream-001-beta.b-cdn.net
      • 1824830694.rsc.cdn77.org
      • 1979322955.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Functional Neural Networks: Shift invariant models for functional data with applications to EEG classification
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Functional Neural Networks: Shift invariant models for functional data with applications to EEG classification

            Jul 24, 2023

            Sprecher:innen

            FH

            Florian Heinrichs

            Sprecher:in · 0 Follower:innen

            MH

            Mavin Heim

            Sprecher:in · 0 Follower:innen

            CW

            Corinna Weber

            Sprecher:in · 0 Follower:innen

            Über

            It is desirable for statistical models to detect signals of interest independently of their position. If the data is generated by some smooth process, this additional structure should be taken into account. We introduce a new class of neural networks that are shift invariant and preserve smoothness of the data: functional neural networks (FNNs). For this, we use methods from functional data analysis (FDA) to extend multi-layer perceptrons and convolutional neural networks to functional data. We…

            Organisator

            I2
            I2

            ICML 2023

            Konto · 657 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Self-Repellent Random Walks on General Graphs - Achieving Minimal Sampling Variance via Nonlinear Markov Chains
            06:22

            Self-Repellent Random Walks on General Graphs - Achieving Minimal Sampling Variance via Nonlinear Markov Chains

            Vishwaraj Doshi, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            ChemGymRL: An Interactive Framework for Reinforcement Learning for Digital Chemistry
            11:43

            ChemGymRL: An Interactive Framework for Reinforcement Learning for Digital Chemistry

            Mark Crowley, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Analyzing Transfer Learning Bounds through Distributional Robustness
            31:32

            Analyzing Transfer Learning Bounds through Distributional Robustness

            Jihun Hamm, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Non-autoregressive Conditional Diffusion Models for Time Series Prediction
            05:16

            Non-autoregressive Conditional Diffusion Models for Time Series Prediction

            Lifeng Shen, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            BiBench: Benchmarking and Analyzing Network Binarization
            05:49

            BiBench: Benchmarking and Analyzing Network Binarization

            Haotong Qin, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Hyperbolic Diffusion Embedding and Distance for Hierarchical Representation Learning
            04:44

            Hyperbolic Diffusion Embedding and Distance for Hierarchical Representation Learning

            Ya-Wei Eileen Lin, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2023 folgen