Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: COLA: Orchestrating Error Coding and Learning for Robust Neural Network Inference Against Hardware Defects
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-004-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-004-alpha.b-cdn.net
      • sl-yoda-v2-stream-004-beta.b-cdn.net
      • 1685195716.rsc.cdn77.org
      • 1239898752.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            COLA: Orchestrating Error Coding and Learning for Robust Neural Network Inference Against Hardware Defects
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            COLA: Orchestrating Error Coding and Learning for Robust Neural Network Inference Against Hardware Defects

            Jul 24, 2023

            Sprecher:innen

            AY

            Anlan Yu

            Sprecher:in · 0 Follower:innen

            NL

            Ning Lyu

            Sprecher:in · 0 Follower:innen

            JY

            Jieming Yin

            Sprecher:in · 0 Follower:innen

            Über

            Error correcting output codes (ECOCs) have been proposed to improve the robustness of deep neural networks (DNNs) against hardware defects of DNN hardware accelerators. Unfortunately, existing efforts suffer from drawbacks that would greatly impact their practicality: 1) robust accuracy (with defects) improvement at the cost of degraded clean accuracy (without defects); 2) no guarantee on better robust or clean accuracy using stronger ECOCs. In this paper, we first shed light on the connection b…

            Organisator

            I2
            I2

            ICML 2023

            Konto · 657 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Revisiting Data-Free Knowledge Distillation with Poisoned Teachers
            05:15

            Revisiting Data-Free Knowledge Distillation with Poisoned Teachers

            Junyuan Hong, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Efficient Self-supervised Learning with Contextualized Target Representations for Vision, Speech and Language
            05:37

            Efficient Self-supervised Learning with Contextualized Target Representations for Vision, Speech and Language

            Alexei Baevski, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Generalized Polyak Step Size for First Order Optimization with Momentum
            05:36

            Generalized Polyak Step Size for First Order Optimization with Momentum

            Xiaoyu Wang, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            FedHPO-Bench: A Benchmark Suite for Federated Hyperparameter Optimization
            05:23

            FedHPO-Bench: A Benchmark Suite for Federated Hyperparameter Optimization

            Zhen Wang, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            "Why did the Model Fail?”: Attributing Model Performance Changes to Distribution Shifts
            05:11

            "Why did the Model Fail?”: Attributing Model Performance Changes to Distribution Shifts

            Haoran Zhang, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Low-Switching Policy Gradient with Exploration via Online Sensitivity Sampling
            05:13

            Low-Switching Policy Gradient with Exploration via Online Sensitivity Sampling

            Yunfan Li, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2023 folgen