Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Neural Collapse in Deep Linear Networks: From Balanced to Imbalanced Data
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-002-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-002-alpha.b-cdn.net
      • sl-yoda-v2-stream-002-beta.b-cdn.net
      • 1001562353.rsc.cdn77.org
      • 1075090661.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Neural Collapse in Deep Linear Networks: From Balanced to Imbalanced Data
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Neural Collapse in Deep Linear Networks: From Balanced to Imbalanced Data

            Jul 24, 2023

            Sprecher:innen

            HD

            Hien Dang

            Sprecher:in · 0 Follower:innen

            TT

            Tho Tran

            Sprecher:in · 0 Follower:innen

            SO

            Stanley Osher

            Sprecher:in · 0 Follower:innen

            Über

            Modern deep neural networks have achieved impressive performance on tasks from image classification to natural language processing. Surprisingly, these complex systems with massive amounts of parameters exhibit the same structural properties in their last-layer features and classifiers across canonical datasets when training until convergence. In particular, it has been observed that the last-layer features collapse to their class-means, and those class-means are the vertices of a simplex Equian…

            Organisator

            I2
            I2

            ICML 2023

            Konto · 657 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Wasserstein Barycenter Matching for Graph Size Generalization of Message Passing Neural Networks
            03:31

            Wasserstein Barycenter Matching for Graph Size Generalization of Message Passing Neural Networks

            Xu Chu, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Gradient-Based Methods for  Discrete Sampling
            28:33

            Gradient-Based Methods for Discrete Sampling

            Will Grathwohl

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            DeSRA: Detect and Delete the Artifacts of GAN-based Real-World Super-Resolution Models
            05:13

            DeSRA: Detect and Delete the Artifacts of GAN-based Real-World Super-Resolution Models

            Liangbin Xie, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Exponential Smoothing for Off-Policy Learning
            08:30

            Exponential Smoothing for Off-Policy Learning

            Imad Aouali, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Differentially Private Sharpness-Aware Training
            05:06

            Differentially Private Sharpness-Aware Training

            Jinseong Park, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Reinforcement Learning with General Utilities: Simpler Variance Reduction and Large State-Action Space
            05:18

            Reinforcement Learning with General Utilities: Simpler Variance Reduction and Large State-Action Space

            Anas Barakat, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2023 folgen