Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Dynamic Constrained Submodular Optimization with Polylogarithmic Update Time
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-010-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-010-alpha.b-cdn.net
      • sl-yoda-v2-stream-010-beta.b-cdn.net
      • 1759419103.rsc.cdn77.org
      • 1016618226.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Dynamic Constrained Submodular Optimization with Polylogarithmic Update Time
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Dynamic Constrained Submodular Optimization with Polylogarithmic Update Time

            Jul 24, 2023

            Sprecher:innen

            KB

            Kiarash Banihashem

            Sprecher:in · 0 Follower:innen

            LB

            Leyla Biabani

            Sprecher:in · 0 Follower:innen

            SG

            Samira Goudarzi

            Sprecher:in · 0 Follower:innen

            Über

            Maximizing a monotone submodular function under cardinality constraint k is a core problem in machine learning and database with many basic applications, including video and data summarization, recommendation systems, feature extraction, exemplar clustering, and coverage problems. We study this classic problem in the fully dynamic model where a stream of inserts and deletes of elements of an underlying ground set is given and the goal is to maintain an approximate solution using a fast update ti…

            Organisator

            I2
            I2

            ICML 2023

            Konto · 657 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Bidirectional Learning for Offline Model-based Biological Sequence Design
            04:59

            Bidirectional Learning for Offline Model-based Biological Sequence Design

            Can Chen, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Trust and Safety with Certified AI
            31:01

            Trust and Safety with Certified AI

            Gagandeep Singh

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Banker Online Mirror Descent: A Universal Approach for Delayed Online Bandit Learning
            05:42

            Banker Online Mirror Descent: A Universal Approach for Delayed Online Bandit Learning

            Jiatai Huang, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Critical Points and Convergence Analysis of Generative Deep Linear Networks Trained with Bures-Wasserstein Loss
            04:48

            Critical Points and Convergence Analysis of Generative Deep Linear Networks Trained with Bures-Wasserstein Loss

            Pierre Bréchet, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Task-specific experimental design for treatment effect estimation
            05:15

            Task-specific experimental design for treatment effect estimation

            Bethany Connolly, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Tensor Decompositions Meet Control Theory: Learning General Mixtures of Linear Dynamical Systems
            04:59

            Tensor Decompositions Meet Control Theory: Learning General Mixtures of Linear Dynamical Systems

            Allen Liu, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2023 folgen