Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Disentangled Generative Models for Robust Prediction of System Dynamics
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-004-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-004-alpha.b-cdn.net
      • sl-yoda-v2-stream-004-beta.b-cdn.net
      • 1685195716.rsc.cdn77.org
      • 1239898752.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Disentangled Generative Models for Robust Prediction of System Dynamics
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Disentangled Generative Models for Robust Prediction of System Dynamics

            Jul 24, 2023

            Sprecher:innen

            SF

            Stathi Fotiadis

            Sprecher:in · 0 Follower:innen

            ML

            Mario Lino

            Sprecher:in · 0 Follower:innen

            SH

            Shunlong Hu

            Sprecher:in · 0 Follower:innen

            Über

            The use of deep neural networks for modelling system dynamics is increasingly popular, but long-term prediction accuracy and out-of-distribution generalization still present challenges. In this work, we treat the parameters of dynamical systems as factors of variation in the data and use the ground-truth values of those parameters to disentangle the representations generative models. Our experiments in phase-space and observation-space dynamics indicate that supervision can effectively produce d…

            Organisator

            I2
            I2

            ICML 2023

            Konto · 657 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Patent Process
            15:59

            Patent Process

            Ramesh Doddaiah

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Reinforcement Learning  and Multi-Agent Learning: Dealing with safety constraints
            32:40

            Reinforcement Learning and Multi-Agent Learning: Dealing with safety constraints

            Giorgia Ramponi

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Reliable Measures of Spread in High Dimensional Latent Spaces
            05:19

            Reliable Measures of Spread in High Dimensional Latent Spaces

            Anna Marbut, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Opening Remarks
            02:05

            Opening Remarks

            Tom Hartvigsen, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            SOM-CPC: Unsupervised Contrastive Learning with Self-Organizing Maps for Structured Representations of High-Rate Time Series
            04:24

            SOM-CPC: Unsupervised Contrastive Learning with Self-Organizing Maps for Structured Representations of High-Rate Time Series

            Iris A. M. Huijben, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Minimizing Trajectory Curvature of ODE-based Generative Models
            05:10

            Minimizing Trajectory Curvature of ODE-based Generative Models

            Sangyun Lee, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2023 folgen