24. července 2023
Sprecher:in · 0 Follower:innen
Sprecher:in · 0 Follower:innen
Sprecher:in · 0 Follower:innen
Sprecher:in · 0 Follower:innen
Sprecher:in · 0 Follower:innen
Sprecher:in · 0 Follower:innen
The use of deep neural networks for modelling system dynamics is increasingly popular, but long-term prediction accuracy and out-of-distribution generalization still present challenges. In this work, we treat the parameters of dynamical systems as factors of variation in the data and use the ground-truth values of those parameters to disentangle the representations generative models. Our experiments in phase-space and observation-space dynamics indicate that supervision can effectively produce disentangled model representations and leads to more accurate long-term prediction both in- and out-of-distribution.The use of deep neural networks for modelling system dynamics is increasingly popular, but long-term prediction accuracy and out-of-distribution generalization still present challenges. In this work, we treat the parameters of dynamical systems as factors of variation in the data and use the ground-truth values of those parameters to disentangle the representations generative models. Our experiments in phase-space and observation-space dynamics indicate that supervision can effectively produce d…
Profesionální natáčení a streamování po celém světě.
Prezentace na podobné téma, kategorii nebo přednášejícího
Tim Dettmers, …
Zhao Song, …