Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Compute-Efficient Deep Learning: Algorithmic Trends and Opportunities
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-007-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-007-alpha.b-cdn.net
      • sl-yoda-v2-stream-007-beta.b-cdn.net
      • 1678031076.rsc.cdn77.org
      • 1932936657.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Compute-Efficient Deep Learning: Algorithmic Trends and Opportunities
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Compute-Efficient Deep Learning: Algorithmic Trends and Opportunities

            Jul 24, 2023

            Sprecher:innen

            BRB

            Brian R. Bartoldson

            Sprecher:in · 0 Follower:innen

            BK

            Bhavya Kailkhura

            Sprecher:in · 0 Follower:innen

            DB

            Davis Blalock

            Sprecher:in · 0 Follower:innen

            Über

            Although deep learning has made great progress in recent years, the exploding economic and environmental costs of training neural networks are becoming unsustainable. To address this problem, there has been a great deal of research on *algorithmically-efficient deep learning*, which seeks to reduce training costs not at the hardware or implementation level, but through changes in the semantics of the training program. In this paper, we present a structured and comprehensive overview of the resea…

            Organisator

            I2
            I2

            ICML 2023

            Konto · 657 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Generative Causal Representation Learning for Out-of-Distribution Motion Forecasting
            04:51

            Generative Causal Representation Learning for Out-of-Distribution Motion Forecasting

            Shayan Shirahmad Gale Bagi, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Pythia: A Suite for Analyzing Large Language Models Across Training and Scaling
            05:23

            Pythia: A Suite for Analyzing Large Language Models Across Training and Scaling

            Stella Biderman, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Fair yet Asymptotically Equal Collaborative Learning
            05:17

            Fair yet Asymptotically Equal Collaborative Learning

            Xiaoqiang Lin, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            High-Probability Bounds for Stochastic Optimization and Variational Inequalities: the Case of Unbounded Variance
            05:16

            High-Probability Bounds for Stochastic Optimization and Variational Inequalities: the Case of Unbounded Variance

            Abdurakhmon Sadiev, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Variational Mixture of HyperGenerators for Learning Distributions over Functions
            05:11

            Variational Mixture of HyperGenerators for Learning Distributions over Functions

            Batuhan Koyuncu, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Reparameterized Policy Learning for Multimodal Trajectory Optimiaztion
            05:50

            Reparameterized Policy Learning for Multimodal Trajectory Optimiaztion

            Zhiao Huang, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2023 folgen