Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: FeDXL: Provable Federated Learning for Deep X-Risk Optimization
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-004-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-004-alpha.b-cdn.net
      • sl-yoda-v2-stream-004-beta.b-cdn.net
      • 1685195716.rsc.cdn77.org
      • 1239898752.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            FeDXL: Provable Federated Learning for Deep X-Risk Optimization
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            FeDXL: Provable Federated Learning for Deep X-Risk Optimization

            Jul 24, 2023

            Sprecher:innen

            ZG

            Zhishuai Guo

            Sprecher:in · 0 Follower:innen

            TY

            Tianbao Yang

            Sprecher:in · 0 Follower:innen

            RJ

            Rong Jin

            Sprecher:in · 0 Follower:innen

            Über

            In this paper, we tackle a novel federated learning (FL) problem for optimizing a family of X-risks, to which no existing FL algorithms are applicable. In particular, the objective has the form of 𝔼_𝐳∼𝒮_1 f(𝔼_𝐳'∼𝒮_2ℓ(𝐰; 𝐳, 𝐳')), where two sets of data 𝒮_1, 𝒮_2 are distributed over multiple machines, ℓ(·; ·,·) is a pairwise loss that only depends on the prediction outputs of the input data pairs (𝐳, 𝐳').This problem has important applications in machine learning, e.g., AUROC maximiza…

            Organisator

            I2
            I2

            ICML 2023

            Konto · 657 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            GibbsDDRM: A Partially Collapsed Gibbs Sampler for Solving Blind Inverse Problems with Denoising Diffusion Restoration
            07:54

            GibbsDDRM: A Partially Collapsed Gibbs Sampler for Solving Blind Inverse Problems with Denoising Diffusion Restoration

            Naoki Murata, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Learning Shared Safety Constraints from Multi-task Demonstrations
            09:56

            Learning Shared Safety Constraints from Multi-task Demonstrations

            Gokul Swamy, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Counterfactual reasoning: From minds to machines to practical applications
            44:18

            Counterfactual reasoning: From minds to machines to practical applications

            Ruth Byrne, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Behavior Contrastive learning for Unsupervised Skill Discovery
            05:15

            Behavior Contrastive learning for Unsupervised Skill Discovery

            Rushuai Yang, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Towards Robust Graph Incremental Learning on Evolving Graphs
            05:07

            Towards Robust Graph Incremental Learning on Evolving Graphs

            Junwei Su, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Target-Aware Generative Augmentations for Single-Shot Adaptation
            05:04

            Target-Aware Generative Augmentations for Single-Shot Adaptation

            Kowshik Thopalli, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2023 folgen