A Deep Conjugate Direction Method for Iteratively Solving Linear Systems

Jul 24, 2023

Speakers

About

We present a novel deep learning approach to approximate the solution of large, sparse, symmetric, positive-definite linear systems of equations.Motivated by the conjugate gradients algorithm that iteratively selects search directions for minimizing the matrix norm of the approximation error, we design an approach that utilizes a deep neural network to accelerate convergence via data-driven improvement of the search direction at each iteration.Our method leverages a carefully chosen convolutional network to approximate the action of the inverse of the linear operator up to an arbitrary constant. We demonstrate the efficacy of our approach on spatially discretized Poisson equations, which arise in computational fluid dynamics applications, with millions of degrees of freedom.Unlike state-of-the-art learning approaches, our algorithm is capable of reducing the linear system residual to a given tolerance in a small number of iterations, independent of the problem size.Moreover, our method generalizes effectively to various systems beyond those encountered during training.

Organizer

Store presentation

Should this presentation be stored for 1000 years?

How do we store presentations

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

Sharing

Recommended Videos

Presentations on similar topic, category or speaker

Interested in talks like this? Follow ICML 2023