Brauer's Group Equivariant Neural Networks

Jul 24, 2023

Speakers

About

We provide a full characterisation of all of the possible group equivariant neural networks whose layers are some tensor power of ℝ^n for three symmetry groups that are missing from the machine learning literature: O(n), the orthogonal group; SO(n), the special orthogonal group; and Sp(n), the symplectic group. In particular, we find a spanning set of matrices for the learnable, linear, equivariant layer functions between such tensor power spaces in the standard basis of ℝ^n when the group is O(n) or SO(n), and in the symplectic basis of ℝ^n when the group is Sp(n).

Organizer

Like the format? Trust SlidesLive to capture your next event!

Professional recording and live streaming, delivered globally.

Sharing

Recommended Videos

Presentations on similar topic, category or speaker

Interested in talks like this? Follow ICML 2023