Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: A Near-Optimal Algorithm for Safe Reinforcement Learning Under Instantaneous Hard Constraints
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-010-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-010-alpha.b-cdn.net
      • sl-yoda-v2-stream-010-beta.b-cdn.net
      • 1759419103.rsc.cdn77.org
      • 1016618226.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            A Near-Optimal Algorithm for Safe Reinforcement Learning Under Instantaneous Hard Constraints
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            A Near-Optimal Algorithm for Safe Reinforcement Learning Under Instantaneous Hard Constraints

            Jul 24, 2023

            Sprecher:innen

            MS

            Ming Shi

            Sprecher:in · 0 Follower:innen

            YL

            Yingbin Liang

            Sprecher:in · 0 Follower:innen

            NS

            Ness Shroff

            Sprecher:in · 0 Follower:innen

            Über

            In many applications of Reinforcement Learning (RL), it is critically important that the algorithm performs safely, such that instantaneous hard constraints are satisfied at each step, and unsafe states and actions are avoided. However, existing algorithms for "safe" RL are often designed under constraints that either require expected cumulative costs to be bounded or assume all states are safe. Thus, such algorithms could violate instantaneous hard constraints and traverse unsafe states (and ac…

            Organisator

            I2
            I2

            ICML 2023

            Konto · 657 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Repository-Level Prompt Generation for Large Language Models of Code
            05:13

            Repository-Level Prompt Generation for Large Language Models of Code

            Disha Shrivastava, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Calibrating Multimodal Learning
            05:57

            Calibrating Multimodal Learning

            Huan Ma, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            On the Statistical Benefits of Temporal Difference Learning
            08:24

            On the Statistical Benefits of Temporal Difference Learning

            David Cheikhi, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Improving Hyperparameter Learning under Approximate Inference in Gaussian Process Models
            04:50

            Improving Hyperparameter Learning under Approximate Inference in Gaussian Process Models

            Rui Li, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Learning Expressive Priors for Generalization and Uncertainty Estimation in Neural Networks
            05:13

            Learning Expressive Priors for Generalization and Uncertainty Estimation in Neural Networks

            Dominik Schnaus, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Dual RL: New Methods for Reinforcement and Imitation Learning
            24:53

            Dual RL: New Methods for Reinforcement and Imitation Learning

            Amy Zhang

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 1 = 0.1%

            Interessiert an Vorträgen wie diesem? ICML 2023 folgen