Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Divide and Conquer Dynamic Programming: An Almost Linear Time Change Point Detection Methodology in High Dimensions
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-010-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-010-alpha.b-cdn.net
      • sl-yoda-v2-stream-010-beta.b-cdn.net
      • 1759419103.rsc.cdn77.org
      • 1016618226.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Divide and Conquer Dynamic Programming: An Almost Linear Time Change Point Detection Methodology in High Dimensions
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Divide and Conquer Dynamic Programming: An Almost Linear Time Change Point Detection Methodology in High Dimensions

            Jul 24, 2023

            Sprecher:innen

            DW

            Daren Wang

            Sprecher:in · 0 Follower:innen

            WL

            Wanshan Li

            Sprecher:in · 0 Follower:innen

            AR

            Alessandro Rinaldo

            Sprecher:in · 0 Follower:innen

            Über

            We develop a novel, general and computationally efficient framework, called Divide and Conquer Dynamic Programming (DCDP), for localizing change points in time series data with high-dimensional features. DCDP deploys a class of greedy algorithms that are applicable to a broad variety of high-dimensional statistical models and can enjoy almost linear computational complexity. We investigate the performance of DCDP in three commonly studied change point settings in high dimensions: the mean model,…

            Organisator

            I2
            I2

            ICML 2023

            Konto · 636 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            A closer look at few-shot classification again
            05:15

            A closer look at few-shot classification again

            Xu Luo, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Revisiting Structured Autoencoders
            05:27

            Revisiting Structured Autoencoders

            Yixiu Zhao, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Primal and Dual Analysis of Entropic Fictitious Play for Finite-sum Problems
            05:06

            Primal and Dual Analysis of Entropic Fictitious Play for Finite-sum Problems

            Atsushi Nitanda, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Three Dogmas of Reinforcement Learning
            19:37

            Three Dogmas of Reinforcement Learning

            David Abel

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Using Causality to Improve Safety Throughout the AI Lifecycle
            40:12

            Using Causality to Improve Safety Throughout the AI Lifecycle

            Suchi Saria, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Optimizing the Collaboration Structure in Cross-silo Federated Learning
            05:08

            Optimizing the Collaboration Structure in Cross-silo Federated Learning

            Wenxuan Bao, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2023 folgen