Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Bridging RL Theory and Practice with the Effective Horizon
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-009-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-009-alpha.b-cdn.net
      • sl-yoda-v2-stream-009-beta.b-cdn.net
      • 1766500541.rsc.cdn77.org
      • 1441886916.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Bridging RL Theory and Practice with the Effective Horizon
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Bridging RL Theory and Practice with the Effective Horizon

            Jul 28, 2023

            Sprecher:innen

            CL

            Cassidy Laidlaw

            Sprecher:in · 0 Follower:innen

            SR

            Stuart Russell

            Sprecher:in · 0 Follower:innen

            AD

            Anca Dragan

            Sprecher:in · 0 Follower:innen

            Über

            Deep reinforcement learning (RL) works impressively in some environments and fails catastrophically in others. Ideally, RL theory should be able to provide an understanding of why this is, i.e. bounds predictive of practical performance. Unfortunately, current theory does not quite have this ability. We compare standard deep RL algorithms to prior sample complexity bounds by introducing a new dataset, BRIDGE. It consists of 155 MDPs from common deep RL benchmarks, along with their corresponding…

            Organisator

            I2
            I2

            ICML 2023

            Konto · 657 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Training Large Language Models on Cerebras Wafer Scale Clusters
            25:52

            Training Large Language Models on Cerebras Wafer Scale Clusters

            Natalia Vassilieva

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Bayes-optimal Learning of Deep Random Networks of Extensive-width
            07:31

            Bayes-optimal Learning of Deep Random Networks of Extensive-width

            Hugo Cui, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Structure in Monge Maps by Engineering Costs
            47:56

            Structure in Monge Maps by Engineering Costs

            Marco Cuturi

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Surrogate Model Extension (SME): A Fast and Accurate Weight Update Attack on Federated Learning
            04:46

            Surrogate Model Extension (SME): A Fast and Accurate Weight Update Attack on Federated Learning

            Junyi Zhu, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Gaussian Process Priors for Systems of Linear Partial Differential Equations with Constant Coefficients
            07:37

            Gaussian Process Priors for Systems of Linear Partial Differential Equations with Constant Coefficients

            Marc Harkonen, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Multi-User Reinforcement Learning with Low Rank Rewards
            05:02

            Multi-User Reinforcement Learning with Low Rank Rewards

            Naman Agarwal, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2023 folgen