Jul 28, 2023
Sprecher:in · 0 Follower:innen
Sprecher:in · 0 Follower:innen
Sprecher:in · 0 Follower:innen
Precise stress recognition from biosignals is inherently challenging due to the heterogeneous nature of stress, individual physiological differences, and scarcity of labeled data. To address these issues, we developed SIM-CNN, a self-supervised learning (SSL) method for personalized stress-recognition models using multimodal biosignals. SIM-CNN involves training a multimodal 1D convolutional neural network (CNN) that leverages SSL to utilize massive unlabeled data, optimizing individual parameters and hyperparameters for precision health. SIM-CNN is evaluated on a real-world multimodal dataset collected from nurses that consists of 1,250 hours of biosignals, 83 hours of which are explicitly labeled with stress levels. SIM-CNN is pre-trained on the unlabeled biosignal data with next-step time series forecasting and fine-tuned on the labeled data for stress classification. Compared to SVMs and baseline CNNs with an identical architecture but without self-supervised pre-training, SIM-CNN shows clear improvements in the average AUC and accuracy, but a further examination of the data also suggests some intrinsic limitations of patient-specific stress recognition using biosignals recorded in the wild.Precise stress recognition from biosignals is inherently challenging due to the heterogeneous nature of stress, individual physiological differences, and scarcity of labeled data. To address these issues, we developed SIM-CNN, a self-supervised learning (SSL) method for personalized stress-recognition models using multimodal biosignals. SIM-CNN involves training a multimodal 1D convolutional neural network (CNN) that leverages SSL to utilize massive unlabeled data, optimizing individual paramete…
Professionelle Aufzeichnung und Livestreaming – weltweit.
Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind
Seobin Park, …
Jie Zhang, …
Nan Jiang, …
Çağlar Hızlı, …
Guanting Liu, …