Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Diffusion Models are Minimax Optimal Distribution Estimators
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-001-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-001-alpha.b-cdn.net
      • sl-yoda-v2-stream-001-beta.b-cdn.net
      • 1824830694.rsc.cdn77.org
      • 1979322955.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Diffusion Models are Minimax Optimal Distribution Estimators
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Diffusion Models are Minimax Optimal Distribution Estimators

            Jul 25, 2023

            Sprecher:innen

            KO

            Kazusato Oko

            Sprecher:in · 0 Follower:innen

            SA

            Shunta Akiyama

            Sprecher:in · 0 Follower:innen

            TS

            Taiji Suzuki

            Sprecher:in · 1 Follower:in

            Über

            While efficient distribution learning is no doubt behind the groundbreaking success of diffusion modeling, its theoretical guarantees are quite limited. In this paper, we provide the first rigorous analysis on approximation and generalization abilities of diffusion modeling for well-known function spaces. The highlight of this paper is that when the true density function belongs to the Besov space and the empirical score matching loss is properly minimized, the generated data distribution achiev…

            Organisator

            I2
            I2

            ICML 2023

            Konto · 657 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding
            07:55

            Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding

            Kenton Lee, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Two Losses Are Better Than One: Faster Optimization Using a Cheaper Proxy
            05:17

            Two Losses Are Better Than One: Faster Optimization Using a Cheaper Proxy

            Blake Woodworth, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Data-Driven Subgroup Identification for Linear Regression
            05:19

            Data-Driven Subgroup Identification for Linear Regression

            Zachary Izzo, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            ODS: Test-Time Adaptation in the Presence of Open-World Data Shift
            05:20

            ODS: Test-Time Adaptation in the Presence of Open-World Data Shift

            Zhi Zhou, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Controllability-Aware Unsupervised Skill Discovery
            05:38

            Controllability-Aware Unsupervised Skill Discovery

            Seohong Park, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Efficient and Equivariant Graph Networks for Predicting Quantum Hamiltonian
            05:35

            Efficient and Equivariant Graph Networks for Predicting Quantum Hamiltonian

            Haiyang Yu, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2023 folgen