Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Patch-level Routing in Mixture-of-Experts is Provably Sample-efficient for Convolutional Neural Networks
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-007-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-007-alpha.b-cdn.net
      • sl-yoda-v2-stream-007-beta.b-cdn.net
      • 1678031076.rsc.cdn77.org
      • 1932936657.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Patch-level Routing in Mixture-of-Experts is Provably Sample-efficient for Convolutional Neural Networks
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Patch-level Routing in Mixture-of-Experts is Provably Sample-efficient for Convolutional Neural Networks

            Jul 25, 2023

            Sprecher:innen

            MNRC

            Mohammed Nowaz Rabbani Chowdhury

            Řečník · 0 sledujících

            SZ

            Shuai Zhang

            Řečník · 1 sledující

            MW

            Meng Wang

            Řečník · 0 sledujících

            Über

            In deep learning, mixture-of-experts (MoE) activates one or few experts (sub-networks) on a per-sample or per-token basis, resulting in significant computation reduction. The recently proposed patch-level routing in MoE (pMoE) divides each input into $n$ patches (or tokens) and sends $l$ patches ($l\ll n$) to each expert through prioritized routing. pMoE has demonstrated great empirical success in reducing training and inference costs while maintaining test accuracy. However, the theoretical exp…

            Organisator

            I2
            I2

            ICML 2023

            Účet · 657 sledujících

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            For Pre-Trained Vision Models in Motor Control, Not All Policy Learning Methods are Created Equal
            04:05

            For Pre-Trained Vision Models in Motor Control, Not All Policy Learning Methods are Created Equal

            Yingdong Hu, …

            I2
            I2
            ICML 2023 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Unsupervised Skill Discovery for Learning Shared Structures across Changing Environments
            05:02

            Unsupervised Skill Discovery for Learning Shared Structures across Changing Environments

            Sang-Hyun Lee, …

            I2
            I2
            ICML 2023 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Unscented Autoencoder
            05:08

            Unscented Autoencoder

            Faris Janjoš, …

            I2
            I2
            ICML 2023 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Loss Balancing for Fair Supervised Learning
            05:13

            Loss Balancing for Fair Supervised Learning

            Mahdi Khalili, …

            I2
            I2
            ICML 2023 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Hardness of Independent Learning and Sparse Equilibrium Computation in Markov Games
            05:41

            Hardness of Independent Learning and Sparse Equilibrium Computation in Markov Games

            Dylan J. Foster, …

            I2
            I2
            ICML 2023 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interval Bound Interpolation for Few-shot Learning with Few Tasks
            05:12

            Interval Bound Interpolation for Few-shot Learning with Few Tasks

            Shounak Datta, …

            I2
            I2
            ICML 2023 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interessiert an Vorträgen wie diesem? ICML 2023 folgen