Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Aging with GRACE: Lifelong Model Editing with Discrete Key-Value Adaptors
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-005-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-005-alpha.b-cdn.net
      • sl-yoda-v2-stream-005-beta.b-cdn.net
      • 1034628162.rsc.cdn77.org
      • 1409346856.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Aging with GRACE: Lifelong Model Editing with Discrete Key-Value Adaptors
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Aging with GRACE: Lifelong Model Editing with Discrete Key-Value Adaptors

            Dez 10, 2023

            Sprecher:innen

            TH

            Thomas Hartvigsen

            Sprecher:in · 0 Follower:innen

            SS

            Swami Sankaranarayanan

            Sprecher:in · 0 Follower:innen

            HP

            Hamid Palangi

            Sprecher:in · 0 Follower:innen

            Über

            Deployed models decay over time due to shifting inputs, changing user needs, or emergent knowledge gaps. When harmful behaviors are identified, targeted edits are required. However, current model editors, which adjust specific behaviors of pre-trained models, degrade model performance over multiple edits. We propose GRACE, a Lifelong Model Editing method, which implements spot-fixes on streaming errors of a deployed model, ensuring minimal impact on unrelated inputs. GRACE writes new mappings in…

            Organisator

            N2
            N2

            NeurIPS 2023

            Konto · 646 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Triangulation Residual Loss for Data-efficient 3D Pose Estimation
            04:36

            Triangulation Residual Loss for Data-efficient 3D Pose Estimation

            Jiachen Zhao, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            VillanDiffusion: A Unified Backdoor Attack Framework for Diffusion Models
            04:56

            VillanDiffusion: A Unified Backdoor Attack Framework for Diffusion Models

            Sheng-Yen Chou, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Human-Aligned Calibration for AI-Assisted Decision Making
            03:51

            Human-Aligned Calibration for AI-Assisted Decision Making

            Nina Corvelo Benz, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Learning Mixtures of Gaussians Using the DDPM Objective
            05:02

            Learning Mixtures of Gaussians Using the DDPM Objective

            Kulin Shah, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Building fingers and hands with vision-based tactile sensing
            26:26

            Building fingers and hands with vision-based tactile sensing

            Edward Adelson

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            The Consensus Game: Language Model Generation via Equilibrium Search
            09:34

            The Consensus Game: Language Model Generation via Equilibrium Search

            Athul Jacob, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2023 folgen