Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Riemannian Laplace approximations for Bayesian neural networks
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-001-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-001-alpha.b-cdn.net
      • sl-yoda-v2-stream-001-beta.b-cdn.net
      • 1824830694.rsc.cdn77.org
      • 1979322955.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Riemannian Laplace approximations for Bayesian neural networks
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Riemannian Laplace approximations for Bayesian neural networks

            Dez 10, 2023

            Sprecher:innen

            FB

            Federico Bergamin

            Sprecher:in · 0 Follower:innen

            PM

            Pablo Moreno-Muñoz

            Sprecher:in · 0 Follower:innen

            SH

            Søren Hauberg

            Sprecher:in · 0 Follower:innen

            Über

            Bayesian neural networks often approximate the weight-posterior with a Gaussian distribution. However, practical posteriors are often, even locally, highly non-Gaussian, and empirical performance deteriorates. We propose a simple parametric approximate posterior that adapts to the shape of the true posterior through a Riemannian metric that is determined by the log-posterior gradient. We develop a Riemannian Laplace approximation where samples naturally fall into weight-regions with low negative…

            Organisator

            N2
            N2

            NeurIPS 2023

            Konto · 646 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Interaction Measures, Partition Lattices and Kernel Tests for High-Order Interactions
            04:24

            Interaction Measures, Partition Lattices and Kernel Tests for High-Order Interactions

            Zhaolu Liu, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            ParaFuzz: An Interpretability-Driven Technique for Detecting Poisoned Samples in NLP
            05:02

            ParaFuzz: An Interpretability-Driven Technique for Detecting Poisoned Samples in NLP

            Lu Yan, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Fair Adaptive Experiments
            04:46

            Fair Adaptive Experiments

            Waverly Wei, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Evolutionary Neural Architecture Search for Transformer in Knowledge Tracing
            04:26

            Evolutionary Neural Architecture Search for Transformer in Knowledge Tracing

            Shangshang Yang, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            From Trainable Negative Depth to Edge Heterophily in Graphs
            04:22

            From Trainable Negative Depth to Edge Heterophily in Graphs

            Yuchen Yan, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Distributionally Robust Skeleton Learning of Discrete Bayesian Networks
            04:37

            Distributionally Robust Skeleton Learning of Discrete Bayesian Networks

            Yeshu Li, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2023 folgen