Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Accurate Interpolation for Scattered Data through Hierarchical Residual Refinement
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-006-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-006-alpha.b-cdn.net
      • sl-yoda-v2-stream-006-beta.b-cdn.net
      • 1549480416.rsc.cdn77.org
      • 1102696603.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Accurate Interpolation for Scattered Data through Hierarchical Residual Refinement
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Accurate Interpolation for Scattered Data through Hierarchical Residual Refinement

            Dez 10, 2023

            Sprecher:innen

            SD

            Shizhe Ding

            Sprecher:in · 0 Follower:innen

            BX

            Boyang Xia

            Sprecher:in · 0 Follower:innen

            DB

            Dongbo Bu

            Sprecher:in · 0 Follower:innen

            Über

            Accurate interpolation algorithms are highly desired in various theoretical and engineering scenarios. Unlike the traditional numerical algorithms that have exact zero-residual constraints on observed points, the neural network-based interpolation methods exhibit non-zero residuals at these points. These residuals, which provide observations of an underlying residual function, can guide predicting interpolation functions, but have not been exploited by the existing approaches. To fill this gap,…

            Organisator

            N2
            N2

            NeurIPS 2023

            Konto · 648 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Bypass Exponential Time Preprocessing: Fast Neural Network Training via Weight-Data Correlation Preprocessing
            05:16

            Bypass Exponential Time Preprocessing: Fast Neural Network Training via Weight-Data Correlation Preprocessing

            Josh Alman, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Ocean Wave Energy: Optimizing Reinforcement Learning Agents for Effective Deployment
            04:49

            Ocean Wave Energy: Optimizing Reinforcement Learning Agents for Effective Deployment

            Vineet Gundecha, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            TransHP: Image Classification with Hierarchical Prompting
            04:58

            TransHP: Image Classification with Hierarchical Prompting

            Wenhao Wang, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            The Difference between Safety and Security for Watermarking
            25:37

            The Difference between Safety and Security for Watermarking

            Jonas Geiping

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Qwen: Towards a Generalist Model
            09:50

            Qwen: Towards a Generalist Model

            Keming Lu

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Data Contribution Estimation for Machine Learning
            2:24:46

            Data Contribution Estimation for Machine Learning

            Stephanie Schoch, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2023 folgen