Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Disentangled Wasserstein Autoencoder for Protein Engineering
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-009-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-009-alpha.b-cdn.net
      • sl-yoda-v2-stream-009-beta.b-cdn.net
      • 1766500541.rsc.cdn77.org
      • 1441886916.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Disentangled Wasserstein Autoencoder for Protein Engineering
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Disentangled Wasserstein Autoencoder for Protein Engineering

            Dez 10, 2023

            Sprecher:innen

            TL

            Tianxiao Li

            Sprecher:in · 0 Follower:innen

            HG

            Hongyu Guo

            Sprecher:in · 1 Follower:in

            FG

            Filippo Grazioli

            Sprecher:in · 0 Follower:innen

            Über

            In protein biophysics, the separation between the functionally important residues (forming the active site or binding surface) and those that create the overall structure (the fold) is a well-established and fundamental concept. Identifying and modifying those functional sites is critical for protein engineering but computationally non-trivial, and requires significant domain knowledge. To automate this process from a data-driven perspective, we propose a disentangled Wasserstein autoencoder wit…

            Organisator

            N2
            N2

            NeurIPS 2023

            Konto · 648 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Presentation from the Challenge Finalists: AiRLIHockey
            10:04

            Presentation from the Challenge Finalists: AiRLIHockey

            Julius Jankowski, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Generating cellular Trajectories, Networks and Molecules
            17:20

            Generating cellular Trajectories, Networks and Molecules

            Smita Krishnaswamy

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Rversible and Irreversible Bracket-Based Dynamics for Deep Graph Neural Networks
            04:55

            Rversible and Irreversible Bracket-Based Dynamics for Deep Graph Neural Networks

            Anthony Gruber, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Convergence Analysis of Sequential Federated Learning on Heterogeneous Data
            05:00

            Convergence Analysis of Sequential Federated Learning on Heterogeneous Data

            Yipeng Li, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            The Quantization Model of Neural Scaling
            05:10

            The Quantization Model of Neural Scaling

            Eric J. Michaud, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Guiding The Last Layer in Federated Learning with Pre-Trained Models
            05:29

            Guiding The Last Layer in Federated Learning with Pre-Trained Models

            Gwen Legate, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2023 folgen