Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Transformers learn to implement preconditioned gradient descent for in-context learning
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-007-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-007-alpha.b-cdn.net
      • sl-yoda-v2-stream-007-beta.b-cdn.net
      • 1678031076.rsc.cdn77.org
      • 1932936657.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Transformers learn to implement preconditioned gradient descent for in-context learning
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Transformers learn to implement preconditioned gradient descent for in-context learning

            Dez 10, 2023

            Sprecher:innen

            KA

            Kwangjun Ahn

            Sprecher:in · 0 Follower:innen

            XC

            Xiang Cheng

            Sprecher:in · 0 Follower:innen

            HD

            Hadi Daneshmand

            Sprecher:in · 0 Follower:innen

            Über

            Motivated by the striking ability of transformers for in-context learning, several works demonstrate that transformers can implement algorithms like gradient descent. By a careful construction of weights, these works show that multiple layers of transformers are expressive enough to simulate gradient descent iterations. Going beyond the question of expressivity, we ask: Can transformers can learn to implement such algorithms by training over random problem instances? To our knowledge, we make th…

            Organisator

            N2
            N2

            NeurIPS 2023

            Konto · 646 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            UniControl: A Unified Diffusion Model for Controllable Visual Generation In the Wild
            04:34

            UniControl: A Unified Diffusion Model for Controllable Visual Generation In the Wild

            Can Qin, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Breaking the Communication-Privacy-Accuracy Tradeoff with f-Differential Privacy
            05:11

            Breaking the Communication-Privacy-Accuracy Tradeoff with f-Differential Privacy

            Richeng Jin, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Bayesian Metric Learning for Uncertainty Quantification in Image Retrieval
            04:41

            Bayesian Metric Learning for Uncertainty Quantification in Image Retrieval

            Frederik Warburg, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Improving Self-supervised Molecular Representation Learning using Persistent Homology
            05:02

            Improving Self-supervised Molecular Representation Learning using Persistent Homology

            Yuankai Luo, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Inferring Hybrid Neural Fluid Fields from Videos
            04:49

            Inferring Hybrid Neural Fluid Fields from Videos

            Hong-Xing Yu, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            DASpeech: Directed Acyclic Transformer for Fast and High-quality Speech-to-Speech Translation
            04:58

            DASpeech: Directed Acyclic Transformer for Fast and High-quality Speech-to-Speech Translation

            Qingkai Fang, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2023 folgen