Dez 10, 2023
Řečník · 0 sledujících
Řečník · 0 sledujících
Řečník · 0 sledujících
Given n observations from two balanced classes, consider the task of labeling an additional m inputs that are known to all belong to one of the two classes. Special cases of this problem are well-known: with completeknowledge of class distributions (n=∞) theproblem is solved optimally by the likelihood-ratio test; whenm=1 it corresponds to binary classification; and when m≈ n it is equivalent to two-sample testing. The intermediate settings occur in the field of likelihood-free inference, where labeled samples are obtained by running forward simulations and the unlabeled sample is collected experimentally. In recent work it was discovered that there is a fundamental trade-offbetween m and n: increasing the data sample m reduces the amount n of training/simulationdata needed. In this work we (a) introduce a generalization where unlabeled samples come from a mixture of the two classes – a case often encountered in practice; (b) study the minimax sample complexity for non-parametric classes of densities under maximum meandiscrepancy (MMD) separation; and (c) investigate the empirical performance of kernels parameterized by neural networks on two tasks: detectionof the Higgs boson and detection of planted DDPM generated images amidstCIFAR-10 images. For both problems we confirm the existence of the theoretically predicted asymmetric m vs n trade-off.Given n observations from two balanced classes, consider the task of labeling an additional m inputs that are known to all belong to one of the two classes. Special cases of this problem are well-known: with completeknowledge of class distributions (n=∞) theproblem is solved optimally by the likelihood-ratio test; whenm=1 it corresponds to binary classification; and when m≈ n it is equivalent to two-sample testing. The intermediate settings occur in the field of likelihood-free inference, where…
Účet · 645 sledujících
Professionelle Aufzeichnung und Livestreaming – weltweit.
Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind
Suman Bhoi, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Yifan Yang, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Yuheng Zha, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Brian Nord, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Omar Chehab, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %