Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Curriculum Learning for Graph Neural Network: Which Edges Should We Learn First
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-009-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-009-alpha.b-cdn.net
      • sl-yoda-v2-stream-009-beta.b-cdn.net
      • 1766500541.rsc.cdn77.org
      • 1441886916.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Curriculum Learning for Graph Neural Network: Which Edges Should We Learn First
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Curriculum Learning for Graph Neural Network: Which Edges Should We Learn First

            Dez 10, 2023

            Sprecher:innen

            ZZ

            Zheng Zhang

            Sprecher:in · 0 Follower:innen

            JW

            Junxiang Wang

            Sprecher:in · 0 Follower:innen

            LZ

            Liang Zhao

            Sprecher:in · 0 Follower:innen

            Über

            Graph neural networks (GNNs) have achieved great success in representing data with dependencies by recursively propagating and aggregating messages along the edges. However, edges in real-world graphs often have varying degrees of difficulty, and some edges may even be noisy to the downstream tasks. Therefore, existing GNNs may lead to suboptimal learned representations because they usually treat every edge in the graph equally. On the other hand, curriculum learning (CL), which mimics the human…

            Organisator

            N2
            N2

            NeurIPS 2023

            Konto · 648 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Differentiable Registration of Images and LiDAR Point Clouds with VoxelPoint-to-Pixel Matching
            04:07

            Differentiable Registration of Images and LiDAR Point Clouds with VoxelPoint-to-Pixel Matching

            Junsheng Zhou, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Bridging RL Theory and Practice with the Effective Horizon
            14:19

            Bridging RL Theory and Practice with the Effective Horizon

            Cassidy Laidlaw, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 2 = 0.2%

            Epistemic Exploration for Generalizable Planning and Learning in Non-Stationary Stochastic Settings
            08:28

            Epistemic Exploration for Generalizable Planning and Learning in Non-Stationary Stochastic Settings

            Rushang Karia, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Learning World Models with Identifiable Factorization
            05:06

            Learning World Models with Identifiable Factorization

            Yu-Ren Liu, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Align Your Prompts: Test-Time Prompting using Distribution Alignment for Zero-Shot Generalization
            04:52

            Align Your Prompts: Test-Time Prompting using Distribution Alignment for Zero-Shot Generalization

            Jameel Hassan, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Inconsistency, Instability, and Generalization Gap of Deep Neural Network Training
            05:06

            Inconsistency, Instability, and Generalization Gap of Deep Neural Network Training

            Rie Johnson, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2023 folgen